计量经济学论文(eviews分析)计量经济作业_第1页
计量经济学论文(eviews分析)计量经济作业_第2页
计量经济学论文(eviews分析)计量经济作业_第3页
计量经济学论文(eviews分析)计量经济作业_第4页
计量经济学论文(eviews分析)计量经济作业_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 我国旅游收入的计量分析一、 经济理论述在研读了大量统计和计量资料的基础上,选择了三个大方面进行研究,既包括旅游人数,人均旅游花费和基本交通建设。其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的发展,越来越多的外国游客来中国旅游消费。中国旅游的国际市场是个有发展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽一样,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进行市场细分,划分了国际和国两个市场。这样,在旅游人数这个解释变量的最终确定上,我们选择了国旅游人数,入境旅游人数。这点选择除了理论支持外,在现实旅游业发展中我们也看到很多景区包

2、括的近郊也有不少外国游客的身影。所以,我们选取这两个解释变量等待下一步进行模型设计和检验。另外,对于人均旅游花费,我们在进行市场细分时,没有延续前两个变量的选择模式,有几个原因。首先,外国游客前来旅游的形式和消费方式各异且很难统计。我们在花大力气收集数据后,仍然没有比较权威的统计数据资料。其次,随着国家对农业的不断重视和扶持,我国农业有了长足发展。农村居民纯收入增加,用于旅游的花费也有所上升。而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量的确定上,我们选择农村人均旅游花费,既是从我国基本国情出发,也是对第一步研究分析的补充。所以我们确定了城镇居民人均旅游花费和农村居民人均旅游花

3、费。旅游发展除了对消费者市场的划分研究,还应考虑到该产业的基础硬件设施。在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手。在我国,交通一般分布为公路,铁路,航班,航船等。由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了避免解释变量的过多过繁以与可能带来的多重共线形等问题,我们只选取了前二者。即确定了公路长度和铁路长度这两个解释变量。其中,考虑到我国旅游业不断发展过程中,高速公路的修建也不断增多,在的确定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实。二、 相关数据三、 计量经济模型的建立()()()()()()我们建立了下述的一般模型:其中 1994-20

4、03年各年全国旅游收入()待定参数 国旅游人数 (万人)入境旅游人数 (万人)城镇居民人均旅游花费 (元)农村居民人均旅游花费 (元)公路长度(含高速)(万公里)铁路长度 (万公里)随即扰动项四、 模型的求解和检验利用Eviews软件,采用以上数据对该模型进行OLS回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 01:56Sample: 1994 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.

5、0; C-340.50471357.835-0.2507700.0882X2-0.0016160.013520-0.1195290.1524X30.2323580.1280171.8150500.1671X46.3910521.7168883.7224630.0337X5-1.0467571.224011-0.8551870.0453X65.6734296.6672660.8509380.4573X7-474.3909355.7167-1.3336200.2745R-squared0.996391    Mean dependent var24

6、94.200Adjusted R-squared0.989174    S.D. dependent var980.4435S.E. of regression102.0112    Akaike info criterion12.28407Sum squared resid31218.86    Schwarz criterion12.49588Log likelihood-54.42035    F-statistic138.060

7、9Durbin-Watson stat3.244251    Prob(F-statistic)0.000944由此可见,该模型可决系数很高,F检验显著,但是、的系数t检验不显著,且的系数符号不符合经济意义,说明存在严重的多重共线性。所以进行以下修正:一计量方法检验与修正多重共线性的检验:首先对Y进行各个解释变量的逐步回归, 由最小二乘法,结合经济意义和统计检验得出拟合效果最好的两个解释变量如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:00Sample: 1994

8、 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C-3193.041606.2101-5.2672170.0012X49.7290031.4354426.7777030.0003X5-1.1970362.059371-0.5812630.1293R-squared0.957285    Mean dependent var2494.200Adjusted R-squared0.945081   

9、60;S.D. dependent var980.4435S.E. of regression229.7654    Akaike info criterion13.95532Sum squared resid369544.9    Schwarz criterion14.04609Log likelihood-66.77660    F-statistic78.43859Durbin-Watson stat0.791632    Pr

10、ob(F-statistic)0.000016继续采用逐步回归法将其余解释变量代入,得出拟合效果最好的三个解释变量,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:01Sample: 1994 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C-3391.810514.1119-6.5974160.0006X20.0294140.0145252.0250420.0393X46.3

11、554592.0501753.0999590.0211X5-0.2845421.772604-0.1605220.1077R-squared0.974627    Mean dependent var2494.200Adjusted R-squared0.961940    S.D. dependent var980.4435S.E. of regression191.2739    Akaike info criterion13.63446Sum squared resid

12、219514.3    Schwarz criterion13.75550Log likelihood-64.17232    F-statistic76.82334Durbin-Watson stat1.328513    Prob(F-statistic)0.000035以上模型估计效果最好,继续逐步回归得到以下结果:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:40Sample: 19

13、94 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C-1973.943441.5947-4.4700340.0066X2-0.0050950.011431-0.4457290.6744X30.3282790.0806824.0688020.0096X44.6654851.1586654.0266020.0101X5-1.7140200.999029-1.7156860.1469R-squared0.994114    Mean

14、dependent var2494.200Adjusted R-squared0.989406    S.D. dependent var980.4435S.E. of regression100.9150    Akaike info criterion12.37329Sum squared resid50919.23    Schwarz criterion12.52458Log likelihood-56.86644    F-s

15、tatistic211.1311Durbin-Watson stat3.034041    Prob(F-statistic)0.000009各项拟合效果都较好。虽然的t检验不是很显著,但考虑到其经济意义在模型中的重要地位,暂时保留。继续引入。Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:41Sample: 1994 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.

16、60; C-2034.155525.2137-3.8730040.0179X2-0.0070330.014095-0.4989770.6440X30.2995620.1286262.3289460.0803X44.7879861.3398883.5734230.0233X5-1.5118511.282385-1.1789370.1638X62.0623346.6592470.3096950.7723R-squared0.994252    Mean dependent var2494.200Adjusted R-squared0.987067&

17、#160;   S.D. dependent var980.4435S.E. of regression111.4976    Akaike info criterion12.54959Sum squared resid49726.89    Schwarz criterion12.73114Log likelihood-56.74797    F-statistic138.3830Durbin-Watson stat3.130122 

18、   Prob(F-statistic)0.000144根据以上回归结果可得,的引入使得模型中、的t检验均不显著,再考察二者的相关系数为0.949132,说明、高度相关,模型产生了多重共线性,因此将去掉。再将代入检验。Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:42Sample: 1994 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C-641.067

19、01265.065-0.5067460.0190X20.0014320.0125790.1138380.9149X30.3157420.0794873.9722640.0165X45.6942291.4560423.9107590.0174X5-1.6317100.977195-1.6697900.1703X7-351.4600313.6492-1.1205510.3252R-squared0.995521    Mean dependent var2494.200Adjusted R-squared0.989921   &

20、#160;S.D. dependent var980.4435S.E. of regression98.43019    Akaike info criterion12.30028Sum squared resid38754.01    Schwarz criterion12.48183Log likelihood-55.50141    F-statistic177.7916Durbin-Watson stat2.850083    

21、Prob(F-statistic)0.000087的系数为负,与经济意义相悖,因此也去掉。由此确定带入模型的解释变量为、。异方差性的检验:再对模型的异方差性进行检验:鉴于我们的样本资料是时间序列数据,选用ARCH检验。ARCH Test:F-statistic0.044061    Probability0.839718Obs*R-squared0.056296    Probability0.812449Test Equation:Dependent Variable: RESID2Method: Least S

22、quaresDate: 12/23/10 Time: 02:43Sample (adjusted): 1995 2003Included observations: 9 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  C5197.7413188.9601.6299180.1471RESID2(-1)0.0792160.3773850.2099080.8397R-squared0.006255    Mean dependent var5645.880Adj

23、usted R-squared-0.135708    S.D. dependent var6668.507S.E. of regression7106.603    Akaike info criterion20.76857Sum squared resid3.54E+08    Schwarz criterion20.81239Log likelihood-91.45855    F-statistic0.044061Durbin-

24、Watson stat1.810449    Prob(F-statistic)0.839718这里Obs*R-squared为0.056296,P=0.812449>0.05 所以接受,表明模型中随机误差项不存在异方差。再考虑P=3的情况:ARCH Test:F-statistic0.126837    Probability0.938100Obs*R-squared0.787922    Probability0.852354Test Equation:Depend

25、ent Variable: RESID2Method: Least SquaresDate: 12/23/10 Time: 02:46Sample (adjusted): 1997 2003Included observations: 7 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.  C206.96718303.9310.0249240.9817RESID2(-1)0.1623770.5363370.3027510.7819RESID2(-2)0.1127990.5704270.1977460

26、.8559RESID2(-3)0.3312760.5706580.5805160.6023R-squared0.112560    Mean dependent var4377.448Adjusted R-squared-0.774879    S.D. dependent var7000.432S.E. of regression9326.298    Akaike info criterion21.41462Sum squared resid2.61E+08 &

27、#160;  Schwarz criterion21.38371Log likelihood-70.95118    F-statistic0.126837Durbin-Watson stat1.521751    Prob(F-statistic)0.938100这里Obs*R-squared为0.787922,P=0.852354>0.05。所以仍然接受,表明模型中随机误差项不存在异方差。自相关性的检验:随机扰动项可能存在一阶负自相关。借助残差项和其一阶滞后项的二维坐标图进一步分析:由

28、图示可看出,残差项和其一阶滞后项显然存在负自相关,然后利用对数线形回归修正自相关性,得到相应结果如下:Dependent Variable: LOG(Y)Method: Least SquaresDate: 12/23/10 Time: 02:52Sample: 1994 2003Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C-8.7695512.012276-4.3580270.0073LOG(X2)0.3247890.3438680.9445160.0383LOG(X3)

29、0.3840660.2277461.6863780.0225LOG(X4)1.4826830.3134874.7296430.0052LOG(X5)0.0057500.0689550.0833820.0468R-squared0.994678    Mean dependent var7.740729Adjusted R-squared0.990421    S.D. dependent var0.442977S.E. of regression0.043355    Aka

30、ike info criterion-3.131931Sum squared resid0.009398    Schwarz criterion-2.980639Log likelihood20.65966    F-statistic233.6398Durbin-Watson stat2.052287    Prob(F-statistic)0.000007从估计的结果看,DW=2.052287,说明修正后有了明显好转,随机扰动项几乎不存在一阶自相关。我们进行了一系列检验

31、和修正后的最终结果如下:LOG(Y) = 0.3247885353*LOG(X2) + 0.384066367*LOG(X3) + 1.482683433*LOG(X4) + 0.*LOG(X5) - 8.769551392=0.994678 =0.990421 F=233.6398五、 经济意义解释C3和C3分别衡量我国旅游收入关于国和入境旅游人数的弹性,也就是表示当旅游人数每变动百分之一时,平均来说,旅游收入变动的百分比。这里要特别注意,例如1998年国旅游人数为69450万人,入境旅游人数为 6347.8万人,则国旅游人数每增加1%,即增加694.5万人,国旅游收入增加0.325%,而入境旅游人数每增加1%,即增加63.5万人,国旅游收入增加0.384%。 C4和C5分别衡量我国旅游收入关于我国城镇居民和农村居民人均旅游花费的弹性,也就表示当人均花费每变动百分之一时,平均来说,旅游收入变动的百分比。城镇居民人均旅游花费每增加1%

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论