




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、机动 目录 上页 下页 返回 结束 高阶线性微分方程解的结构 第六节一、二阶线性微分方程举例一、二阶线性微分方程举例 第七章 一、二阶线性微分方程一、二阶线性微分方程举例举例 当重力与弹性力抵消时, 物体处于 平衡状态, 例例1. 质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,xxo解解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图. 设时刻 t 物位移为 x(t).(1) 自由振动情况.弹性恢复力物体所受的力有:(虎克定律)xcf成正比, 方向相反.建立位移满足的微分方程.机动 目录 上页 下页 返回
2、 结束 据牛顿第二定律得txxctxmdddd22,2mck,2mn令则得有阻尼自由振动方程:0dd2dd222xktxntx阻力txRdd(2) 强迫振动情况. 若物体在运动过程中还受铅直外力作用,t pHFsin,令mhH则得强迫振动方程:t phxktxntxsindd2dd222机动 目录 上页 下页 返回 结束 求电容器两极板间电压 0ddiRCqtiLE例例2. 联组成的电路, 其中R , L , C 为常数 ,sintEEm所满足的微分方程 .cu提示提示: 设电路中电流为 i(t),LERKCqqi上的电量为 q(t) , 自感电动势为,LE由电学知,ddtqi ,CquCti
3、LELdd根据回路电压定律:设有一个电阻 R , 自感L ,电容 C 和电源 E 串极板机动 目录 上页 下页 返回 结束 在闭合回路中, 所有支路上的电压降为 0LCLR1,20令tLCEututumCCCsindd2dd2022串联电路的振荡方程:如果电容器充电后撤去电源 ( E = 0 ) , 则得0dd2dd2022CCCututuLERKCqqi22ddtuCLCtuCRCddCutEmsin机动 目录 上页 下页 返回 结束 化为关于cu的方程:,ddtuCiC注意故有 n 阶线性微分方程阶线性微分方程的一般形式为方程的共性 为二阶线性微分方程. , )()()(xfyxqyxpy
4、 可归结为同一形式:)()()()(1) 1(1)(xfyxayxayxaynnnn时, 称为非齐次方程 ; 0)(xf时, 称为齐次方程.复习复习: 一阶线性方程)()(xQyxPy通解:xexQexxPxxPd)(d)(d)(xxPeCyd)(非齐次方程特解齐次方程通解Yy0)(xf机动 目录 上页 下页 返回 结束 )(11yCxP )(11yCxQ0证毕二、线性齐次方程解的二、线性齐次方程解的结构结构)(),(21xyxy若函数是二阶线性齐次方程0)()( yxQyxPy的两个解,也是该方程的解.证证:)()(2211xyCxyCy将代入方程左边, 得 11 yC22yC 22yC22
5、yC)()(1111yxQyxPyC )()(2222yxQyxPyC (叠加原理) )()(2211xyCxyCy则),(21为任意常数CC定理定理1.机动 目录 上页 下页 返回 结束 说明说明:不一定是所给二阶方程的通解.例如,)(1xy是某二阶齐次方程的解,)(2)(12xyxy也是齐次方程的解 )()2()()(1212211xyCCxyCxyC并不是通解但是)()(2211xyCxyCy则为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念. 机动 目录 上页 下页 返回 结束 定义定义:)(,),(),(21xyxyxyn设是定义在区间 I 上的 n 个函数,21nkk
6、k使得Ixxykxykxyknn, 0)()()(2211则称这 n个函数在 I 上线性相关线性相关, 否则称为线性无关线性无关.例如, ,sin,cos,122xx在( , )上都有0sincos122xx故它们在任何区间 I 上都线性相关线性相关;又如,,12xx若在某区间 I 上,02321xkxkk则根据二次多项式至多只有两个零点 ,321,kkk必需全为 0 ,可见2,1xx故在任何区间 I 上都 线性无关线性无关.若存在不全为不全为 0 的常数机动 目录 上页 下页 返回 结束 两个函数在区间 I 上线性相关与线性无关的充要条件充要条件:)(),(21xyxy线性相关存在不全为 0
7、 的21, kk使0)()(2211xykxyk1221)()(kkxyxy( 无妨设)01k)(),(21xyxy线性无关)()(21xyxy常数思考思考:)(),(21xyxy若中有一个恒为 0, 则)(),(21xyxy必线性相关相关0)()()()(2121xyxyxyxy(证明略)21, yy可微函数线性无关机动 目录 上页 下页 返回 结束 定理定理 2.)(),(21xyxy若是二阶线性齐次方程的两个线性无关特解, 则)()(2211xyCxyCy数) 是该方程的通解.例如例如, 方程0 yy有特解,cos1xy ,sin2xy 且常数,故方程的通解为xCxCysincos21(
8、自证) 推论推论. nyyy,21若是 n 阶齐次方程 0)()()(1) 1(1)(yxayxayxaynnnn的 n 个线性无关解, 则方程的通解为)(11为任意常数knnCyCyCyxytan21y为任意常21,(CC机动 目录 上页 下页 返回 结束 三、线性非齐次方程解的结三、线性非齐次方程解的结构构 )(* xy设是二阶非齐次方程的一个特解, )(*)(xyxYyY (x) 是相应齐次方程的通解,定理定理 3.)()()(xfyxQyxPy 则是非齐次方程的通解 .证证: 将)(*)(xyxYy代入方程左端, 得)*( yY)*( )(yYxP)*)(*)(*(yxQyxPy )(
9、)(YxQYxPY )(0)(xfxf)*( )(yYxQ复习 目录 上页 下页 返回 结束 )(*)(xyxYy故是非齐次方程的解, 又Y 中含有两个独立任意常数,例如例如, 方程xyy 有特解xy *xCxCYsincos21对应齐次方程0 yy有通解因此该方程的通解为xxCxCysincos21证毕因而 也是通解 .机动 目录 上页 下页 返回 结束 定理定理 4.), ,2, 1()(nkxyk设分别是方程的特解,是方程),2, 1()()()(nkxfyxQyxPyk nkkyy1则)()()(1xfyxQyxPynkk 的特解. (非齐次方程之解的叠加原理) 定理3, 定理4 均可
10、推广到 n 阶线性非齐次方程. 机动 目录 上页 下页 返回 结束 定理定理 5.)(,),(),(21xyxyxyn设是对应齐次方程的 n 个线性)(*)()()(2211xyxyCxyCxyCynn无关特解, 给定 n 阶非齐次线性方程)()()() 1(1)(xfyxayxaynnn)()(xyxY)(* xy是非齐次方程的特解, 则非齐次方程的通解为齐次方程通解非齐次方程特解机动 目录 上页 下页 返回 结束 常数, 则该方程的通解是 ( ).321,yyy设线性无关函数都是二阶非齐次线性方程)()()(xfyxQyxPy 的解, 21,CC是任意;)(32211yyCyCA;)()(
11、3212211yCCyCyCB;)1()(3212211yCCyCyCC.)1()(3212211yCCyCyCDD例例3.提示提示:3231,yyyy都是对应齐次方程的解,二者线性无关 . (反证法可证)3322311)()()(yyyCyyCC(89 考研考研 )3322311)()()(yyyCyyCD机动 目录 上页 下页 返回 结束 例例4. 已知微分方程)()()(xfyxqyxpy 个解,2321xxeyeyxy求此方程满足初始条件3)0(, 1)0(yy的特解 .解解:1312yyyy与是对应齐次方程的解, 且xexeyyyyxx21312常数因而线性无关, 故原方程通解为)(
12、)(221xeCxeCyxxx代入初始条件, 3)0(, 1)0(yy,2, 121CC得.22xxeey故所求特解为有三 机动 目录 上页 下页 返回 结束 *四、常数变四、常数变易法易法复习: 常数变易法: )()(xfyxpy对应齐次方程的通解: )(1xyCy xxpexyd)(1)(设非齐次方程的解为 )(1xyy 代入原方程确定 ).(xu对二阶非齐次方程 )()()(xfyxQyxPy 情形情形1. 已知对应齐次方程通解: )()(2211xyCxyCy设的解为 )()(21xyxyy)(1xv)(2xv )(),(21待定xvxv由于有两个待定函数, 所以要建立两个方程:)(x
13、u机动 目录 上页 下页 返回 结束 2211vyvyy2211vyvy,21vvy 中不含为使令02211vyvy于是22112211vyvyvyvyy 将以上结果代入方程 : 2211vyvy1111)(vyQyPy )()(2222xfvyQyPy 得)(2211xfvyvy故, 的系数行列式02121yyyyW21, yy是对应齐次方程的解,21线性无关因yyP10 目录 上页 下页 返回 结束 fyWvfyWv12211,1积分得: )(),(222111xgCvxgCv代入 即得非齐次方程的通解: )()(22112211xgyxgyyCyCy于是得 说明说明: 将的解设为 )()(21xyxyy)(1xv)(2xv只有一个必须满足的条件即方程, 因此必需再附加一 个条件, 方程的引入是为了简化计算.机动 目录 上页 下页 返回 结束 情形情形2.).(1x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国立式薄膜干燥机行业市场现状供需分析及投资评估规划分析研究报告
- 体育赛事组织与策划规程
- 2025-2030年中国日用瓷器具行业市场深度分析及前景趋势与投资研究报告
- 食品零售行业的智能化转型路径实践
- 养生知识教学课件
- 能源资源高效调配技术研究与实践
- 智能家电产品安装调试手册
- 大连七年级信息技术课件
- 微生物组诊断试剂盒行业成功案例分析
- 工业分析94课件
- 2024-2025学年四川省成都市锦江区八年级上学期期末数学试卷(含答案)
- 中试基地建设可行性研究报告
- 光伏发电建设项目二级安全教育培训考试试卷(附答案)
- 大学英语四级高频词汇1500+六级高频词汇1500
- 竣工工程安全评估报告
- 《基础护理学(第七版)》考前强化模拟练习试题库500题(含答案)
- 中学教科研课题管理制度
- 叉车司机证考试题库(含各题型)
- 房屋永久居住权协议书(2篇)
- 《问诊与体格检查》课件
- 2025-2030年中国合成氨产品行业市场发展现状及前景趋势分析报告
评论
0/150
提交评论