铜藻膳食纤维提取条件的优化的综述_第1页
铜藻膳食纤维提取条件的优化的综述_第2页
铜藻膳食纤维提取条件的优化的综述_第3页
铜藻膳食纤维提取条件的优化的综述_第4页
铜藻膳食纤维提取条件的优化的综述_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附录一.文献综述铜藻膳食纤维的应用及发展现状摘要 铜藻作为褐藻的一种,在我国沿海地区有着广泛的分布,资源丰富,民间可全藻用药,多作为制胶工业原料,但其化学成分特别是有生物活性的特效成分研究得较少,已见报道含褐藻酸,甘露醇,多糖等成分。膳食纤维是人类消化过程所需要的一类重要的食物营养素,对人类的健康有着重要作用1。本文主要介绍膳食纤维的分类、分离提取、在食品中的应用、研究现状及发展趋势。关键词 膳食纤维;铜藻;应用Abstract To be one kind of the brown algae, Sargassum Horneri widely distributes in Coastal

2、area in our country.Being rich in the resources,it can be used in medicine and be treated as material for industry.But its chemical composition, particularly characteristic components that have biological activity have been studied lesser.It has been reported that it included algin, mannitol and amy

3、lose.Dietary fiber is a kind of food nutriment in digestion.It has important effect in healthiness of human being.In this paper,it mostly introduced the classification, The separation withdraws,the application in food, the study actuality and the development tendency.Key Words Dietary fiber;Sargassu

4、m Horneri;Application铜藻产于嵊山、中街山、渔山、韭山、大陈和南麂。我国沿海都有分布。本种系北太平洋西部特有的暖温带性海藻。可作。 藻体黄褐色,树状,枝叶繁茂,高0.5l米,可达7米。主枝圆柱形,下部有数条纵走浅沟,直径1.53毫米。互生、对生分枝,吟片披针形,中肋及顶,锯齿深裂。柄细长。气囊圆柱形,长0.5l厘米,直径23毫米,两端尖细,冠吟羽裂, 中肋及顶,固着器裂瓣状。生殖托圆柱形,有短柄,雄托长48厘米,直径1.52毫米;雌托长1.53厘米,直径23毫米。生长在风浪较大的干潮线以下至3米处的岩石上或低潮带石沼中。生长盛期35月。膳食纤维是人类消化过程所需要的一类重要

5、的食物营养素2。大量研究表明,膳食纤维在结肠癌、高胆固醇血症、冠心病、肥胖、糖尿病以及其它多种慢性疾病防止中具有积极作用。随着现代科学技术在医学、生物学等领域取得的突破性成就,近年来国际营养学家一致认为膳食纤维能够平衡人体营养,调节机体功能,可与传统的6大营养素(即蛋白质、脂肪、水、矿物质、维生素、碳化物)并列为第七大营养素3。我国居民以植物性食物为主,膳食纤维的摄入相对充足。但近年来,人们的膳食结构发生了很大变化,慢性病的患病率也在不断上升。1 膳食纤维的性质及分类膳食纤维按其溶解性,可分为水溶性膳食纤维(soluble dietary fiber, SDF)和水不溶性膳食纤维(insolu

6、ble dietary fiber ,IDF) 4。水溶性膳食纤维主要指细胞壁内的储存物质和分泌物,如果胶、树胶、葡聚糖、瓜儿豆胶、梭甲基纤维素等;水不溶性膳食纤维主要指细胞壁的组成部分,如纤维素、半纤维素、木质素、壳聚糖和植物蜡等。按膳食纤维的来源分,可分成植物来源膳食纤维、动物来源膳食纤维、海藻多糖类膳食纤维、微生物多糖、合成半合成类膳食纤维等5。2 膳食纤维的分离提取膳食纤维依据原料和对膳食纤维产品特性要求的不同,分离提取方法有很大不同,必须的几道工序包括原料粉碎、浸泡冲洗、漂白脱色、脱水干燥和产品粉碎过筛等。2.1 化学法 采用化学法提取膳食纤维,以碱法提取应用较普遍,如在提取过程中改

7、变碱液浓度,并辅以其它化学试剂,还可将水溶性或非水溶性膳食纤维进一步分离。除碱法提取外,还有酸法、絮凝剂法等。其原理是利用化学试剂除去原料中的蛋白质、淀粉、脂肪等成分,从而分离提取膳食纤维。2.2 酶法 加人各种酶类分解原料中的蛋白质、淀粉、脂肪等成分,从而分离提取膳食纤维。若在所得的膳食纤维中再引人半纤维素酶、阿拉伯聚糖酶等,可制备一些活性成分,从而提高膳食纤维品质。2.3 膜分离法 膜分离法制备膳食纤维的报道不多,由于该法能通过改变膜的分子截留量制备不同分子量的膳食纤维,且能实现工业化生产,可以预见,它将是分离水溶性膳食纤维最有前途的方法。2.4 化学试剂和酶结合分离法采用化学分离法制备的

8、膳食纤维还含有少量蛋白质和淀粉,要制备极纯净的膳食纤维,必须结合酶处理,利用酶降解膳食纤维中残存的蛋白质和淀粉等杂质5。3 膳食纤维的应用膳食纤维食品在西方国家的风行始于20 世纪70年代, 日本对膳食纤维的兴趣起源于 20世纪 90年代,我国食品行业到20世纪90 年代末才开始有强化膳食纤维食品问世。现在,膳食纤维的独特生理功能和营养保健作用使其作为主要食品组分在食品中得到了广泛的应用,与维生素和矿物质处于同等的地位。3.1 在主食食品中的应用膳食纤维可用于制作馒头、挂面、方便面等主食。 馒头中加入6%的膳食纤维,成品颜色及味道如同全麦粉做成的馒头,并且有特殊的香味, 口感良好。面条中加入5

9、%的膳食纤维,面条熟后强度增加、韧性良好、耐煮耐泡,口感清爽。 也可把膳食纤维添加到谷物原料中, 通过适当的加工工艺做成早餐食品。3.2 在焙烤食品中的应用膳食纤维在焙烤食品中得到了广泛的应用,典型产品有:高膳食纤维面包、蛋糕、饼干等。膳食纤维在焙烤食品中的添加,能改变制品的质构,提高其持水力,增加其柔软度和疏松度,延长制品的货架期。膳食纤维在焙烤食品中的添加量宜控制在5%-6%,添加量不宜过大,否则会影响制品的质地和口感。 比如,在糕点制作中含有大量的水分, 烘焙时会凝固成松软的产品而影响质量, 膳食纤维的添加可保持糕点制品的绵软、滋润,增加其保质期。3.3 在乳制品中的应用乳制品被认为是含

10、有除膳食纤维外人体所需的全部营养素,一杯牛奶能强壮一个民族,到2001年底我国人均乳制品消费已接近10kg/年。在乳制品中添加膳食纤维能同时满足人们对蛋白质、 维生素A脂肪等动物性营养成分和膳食纤维等植物性营养成分的需求, 能进一步提高乳制品的营养价值和应用范围。长期饮用添加膳食纤维的乳制品能使肠道舒畅,防治便秘,并可降低胆固醇、调节血脂、血糖、协助减肥,尤其适合中老年人、糖尿病人、肥胖者饮用。 在液态乳品中的建议添加量为 1%-5%;在固态乳品中的建议添加量为1%-3%。3.4 在饮料制品中的应用 膳食纤维饮料是西方国家很流行的功能性饮料,它既能解渴、补充水分,又可提供人体所需的膳食纤维。这

11、类产品,尤其是水溶性膳食纤维在欧美和日本比较流行。我国的膳食纤维饮料种类繁多,主要用于液体、固体和碳酸饮料,也有将膳食纤维用乳酸杆菌发酵后制成乳清型饮料。水溶性膳食纤维在果汁、果肉混浊类饮料中的建议添加量为0.5%-1.5%在透明类饮品中的建议添加量为 0.3%-1.2%。3.5 在肉制品中的应用 对肉制品行业而言,随着瘦肉型猪的普及,充分利用肥肉已不是迫切需要解决的问题, 但是日益关注健康的消费者对食物提出了更高的要求, 即高蛋白、低脂肪,但降低脂肪会严重影响肉制品的风味和口感, 解决这一问题的途径之一就是脂肪代用品的使用。脂肪代用品主要有三大类:蛋白质类、淀粉类、膳食纤维类。蛋白质类主要用

12、于冷冻食品;淀粉类具有良好的吸水作用,并具有一定的黏度,而且价格低廉,因而为多数企业所使用,但淀粉用量增多后,产品的粉质感较重,导致产品的品质下降;膳食纤维类是一些高分子聚合物,不易为人体所消化和吸收,它具有良好的保水、保油和凝胶性能,并会使产品具有丰厚、润滑的口感,从而达到模拟脂肪的感官特征。比如在火腿肠中添加2.53的膳食纤维, 可提高产品的出品率,增强其口感和质构。3.6 在其它食品中的应用 除上述应用外,膳食纤维还可用于快餐、膨化食品、糖果、肉类、罐头和一些功能性保健食品中,它同样可起到相同的生物功效6。4 膳食纤维的研究现状及发展趋势4.1研究现状膳食纤维资源丰富,价格低廉,因此有着

13、广泛的应用前景, 国外膳食纤维食品的开发应用已经较为普遍,而我国对于膳食纤维的研究与开发与国外还是有一定的差距,应用研究也处在起步阶段。因此在我国还有待统一规划,有计划地协调全国力量,确定重点开发资源,协作攻关,早日在我国形成膳食纤维多品种生产的龙头产业,以满足广大食品市场的需要,优化和改善我国人民膳食结构7 。可以肯定的是,对膳食纤维所具有的生理功效进行研究和应用,一定具有较好的社会效益和经济效益,并且在经济发展的同时,减少相关疾病的发生,保证人民身体健康8。4.2 发展趋势膳食纤维研究的发展趋势主要体现在以下几点: 膳食纤维资源的开发,一方面是对现有的资源(如米糠、麦麸、豆渣、苹果渣等)的

14、进一步利用,另一方面是对未发掘的资源进行调查与开发; 膳食纤维分离制备方法的研究,由于不同的加工方法对膳食纤维产品的理化性质和生理功能有明显影响,如反复用水浸泡冲洗和频繁的热处理会明显减少膳食纤维终产品的持水力和膨胀力,这样不仅会恶化其工艺特性,而且会影响其生理功能的发挥。因此,采用较为温和的工艺方法和高新技术提取分离膳食纤维是今后膳食纤维的研究方向之一; 膳食纤维的生理功能的研究,关于膳食纤维的生理功能已有不少报道,但是膳食纤维的抗氧化作用和清除自由基的活性作用是否能进入血液循环对人体生理过程产生影响,膳食纤维的解毒机理,膳食纤维中单糖与醛酸与由它们构成的膳食纤维生理功能之间确定的关系以及膳

15、食纤维其它一些理化特性与人体的生理关系等等方面都值得进一步研究; 膳食纤维用途进一步的拓展,膳食纤维的各种独特理化性质、生理功能以及作为环保材料的种种优点的确有许多可开发的用途值得进一步去探索; 膳食纤维的工业化生产的研究,如何将膳食纤维这一长期被忽视的宝贵资源充分利用起来,不仅要求其应用范围的拓宽,更要求将膳食纤维产品以工业化规模开发出来,使之有经济上的可行性,提高膳食纤维的开发利用的经济价值,也是研究方向之一。参考文献1 袁清香,付玲.铜藻Sargassu Horneri的化学成分研究J.广东化工,2006,33(5):42-432 陈培基,李刘冬,杨贤庆等. 酶处理马尾藻提取膳食纤维的研

16、究J. 食品与发酵工业, 2003,29(12):76-793 粱永江.膳食纤维与人类健康关系的研究进展J.中华临床医药,2004,5(5):43-454 刘晓婷.膳食纤维的开发及应用J.中国食物与营养,2004,(9):21-245 曾顺德,张迎君,漆巨容.膳食纤维开发利用现状J.西南园艺,2005,33:99-1016 陆勤丰.膳食纤维制品的开发研究J.粮食加工,2005,(4):44-477 刘成梅,李资玲,梁瑞红等. 膳食纤维的生理功能与应用现状J. 食品研究与开发,2006,33(1):122-1258 修建成,曹荣安 ,孙保华等. 膳食纤维的生理功能与应用现状J,农产品加工,200

17、5,(8):48-539 Nuria Grigelmo-Miguel ,Olga MartõÂ n-Belloso*.Characterization of dietary fiber from orange juice extraction. Food Research International,1999,(31) 5: 355-361 10 S.H. Knutsen a,*, A.K. Holtekjolen a,b. Preparation and analysis of dietary fibre constituents in whole grain from

18、hulled and hull-less barley. Food Chemistry ,2007,(102):707-715附录二.外文文献原文一Characterization of dietary fiber from orangejuice extractionNuria Grigelmo-Miguel & Olga MartõÂ n-Belloso*Food Technology Department, UTPV-CeRTA, University of Lleida, Rovira Roure 177, 25198 Lleida, SpainResidu

19、es from orange juice extraction are potentially an excellent source of dietary fiber (DF), because this material is rich in pectin and may be available in large quantities. Chemical and physical characteristics of DF obtained from orange pulp were determined for three varieties of oranges. Total DF

20、content reached quite high values: 35.4±36.9% dry matter (DM). Orange DF was rich in pectins (15.7±16.3% DM), as well as cellulose and hemicellulose (16.6±18.1% DM) and lignin (2.2±3.0% DM). The product showed a relatively high water holding capacity (7.3±10.3 g water/g fibe

21、r), high oil absorption property (0.9±1.3 g oil/g ®ber) and ow caloric value(3519±3735 cal/g). Chemical analyses of orange DF concentrate howed low contents of protein, fat and ash (8.1±10.1%, 1.5±3.0% and 2.6-3.1% DM, respectively). The orange DF color ranged from yellow to

22、 light orange. These characteristics suggested many potential applications such as, clouding agent in beverages, thickener and gelling agent as well as binder, texturizer and low calorie bulk ingredient. # 1999 Canadian Institute of Food Science and Technology. Published by Elsevier Science Ltd. All

23、 rights reservedKeywords: by-products, orange, dietary fiber, pectin.INTRODUCTIONThe availability of high quality foods with a high dietary fiber (DF) content is of key importance in obtaining changes in fiber intake recommended for adults in western societies. High dietary fiber intake is indicated

24、 in the treatment and prevention of many diseases including colon cancer, coronary heart disease, obesity, diabetes and gastrointestinal disorders (Anderson et al.,1994). The usual sources of DF in fiber-enriched foods are cereals but the use of fruits as a source of DF could be more physiologically

25、 adequate (Saura-Calixto, 1993) and quite feasible.The world production of citrus fruits was nearly 58 million metric tons in the 1993±1994 growing season, with oranges accounting for 75% of the total (Florida Department of Agriculture, 1995). Two major producers, Brazil and the United States,

26、grow 60% of the world's oranges and 85% of their production is processed as juice. Mediterranean countries are quickly becoming both producers and processors (Johnson, 1994).When orange juice extraction is completed, the amount of rejected bagasse is almost equal to that of juice. This refuse is

27、 treated as waste and discarded or used as raw materials for vinegar, molasses and feedyeast (Braddock, 1995), but these are limited applications. By-products from orange juice extraction have apotential use as a DF source. The material is rich in pectin and, in addition, plentiful and inexpensive.T

28、here is an increasing interest in pectins for their potential to bring down blood cholesterol levels, specifically, by decreasing the low-density-lipoprotein-cho-lesterol fraction without changing the levels of high-density-lipoprotein-cholesterol and triglycerides. Pectins also a.ect glucose metabo

29、lism by lowering the glucose response curve (Ink and Hurt, 1987; Reiser, 1987; Baker,1994). Besides clinical applications, pectin is used as a food additive because of its specific properties as a gelling agent (Sanderson, 1981; Pilnik and Voragen, 1992). Given that DF concentrates from oranges may

30、be used as an ingredient in food formulations, it is necessary to evaluate orange DF components and properties.The objectives of this study were to determine the DF content and the main constituents of orange DF concentrates obtained from the juice extraction residue. Three orange varieties were con

31、sidered: Navel, Salustiana and Valencia Late. The proximate composition of orange DF and the most important physical and chemical properties (pH, acidity, color, apparent density, energy value, and water and oil holding capacities) were also evaluated.MATERIALS AND METHODSSample preparationThe DF co

32、ncentrates from orange (Citrus sinensis) vars. Navel, Salustiana and Valencia Late were supplied by the factory Indule rida, S.A. (Alguaire, Lleida, Spain). The ripeness indexes (RI = soluble solids/titrable acidity, citric acid) of the original oranges were Navel=12±14; Salustiana=8±

33、;11; Valencia Late=12±15 (data from the supplier). The orange DF concentrates were obtained from orange bagasse, which remained after orange juice extraction. The bagasse was collected from a juice extractor (291-B model, FMC Corporation, Citrus Machinery Division, Lakeland, FL). The juice extr

34、actor discharged the rind, and the inner part of the fruit was pressed in the central extraction tube. All orange rind was discarded. After the oranges were thoroughly squeezed, the juice and the bagasse were passed through a prefinisher in the central extraction tube and,finally, through a fine scr

35、een in the finisher to separate juice from bagasse. The bagasse consisted of the central core, the segment membrane and the pulp. This bagasse was washed and dried according to factory protocol (Sorribas, 1993), to obtain orange DF concentrate.Upon arrival to our laboratory, the orange DF concentrat

36、es were grounded to 30 mesh with a centrifugal milling (Cyclotec 1093, Tecator, HoÈ ganaÈ s, Sweden) prior to physical and chemical determinations.Fiber analysisEnzymatic removal of protein from orange DF concentrates and separation into soluble and insoluble fractions by centrifugation wa

37、s carried out according to ManÄ as (1992), a modification of the AOAC method (Prosky et al., 1988) (Fig. 1). The entire treatment was carried out in a centrifugation tube, avoiding any possible sample loss. Samples were enzymatically digested under the conditions specified in the AOAC ocial met

38、hod (Prosky et al., 1988). Given that the samples did not contain starch, -amylase and amyloglucosidase treatments were not necessary. After performing the protease treatment, insoluble DF residue was obtained through a centrifugation step (1000 g). Supernatant and water washes were collected in the

39、 same tube for further isolation of the soluble DF fraction, which was dialyzed using a continuous water-renovation system. The system consisted of a 30 l methacrylate dialysis chamber linked to a pre-chamber, with a thermostat and an evaxcuation system. Tap water was propelled with a peristaltic pu

40、mp to the bottom of the pre-chamber, where it was heated to 25, overflowing then into the dialysis chamber. Waterflow was 7 l/h. Soluble DF fractions were introduced into dialysis tubing (12 000±14 000 MWCO, Dialysis Tubing Visking 9-36/32 mm, Medicell International, Ltd., London, UK) and place

41、d into the dialysis chamber. An additional device that created an elliptical movement, attached to a speed control system achieved continuous agitation of the dialysis bags. Neutral Sugars and Uronic Acids in the soluble DF fraction were quantified by spectrophotometric procedures (Southgate, 1976;

42、Scott, 1979,respectively).pH and acidityThe pH was determined potentiometrically with a pH meter using 10% (w/v) orange DF solutions. The acidity of these solutions was determined by titration with NaOH 0.1 N to pH 8.10. Results were expressed in g acid citric/100 ml of sample.Color determinationThe

43、 cieLab coordinates (L*, a*, b*) of the orange DF concentrates were directly read in a glass cuvette with a spectrophotocolorimeter MiniScan MS/Y-2500 (Hun-terLab, In., Reston, VA, USA), calibrated with a white tile (L*=94.0, a*=ÿ1.1, b*=0.6), at 60_ with a D-65 illuminant source.Apparent densi

44、tyThis was determined as the weight divided by the volume of the orange DF concentrate (Larrauri et al., 1994).Energy valueThe energy value was determined by combustion with the aid of a calorimetric pump (Autobomb,Gallenkamp, UK).Water (WHC) and oil (OHC) holding capacity determinationThe WHC and O

45、HC of the orange DF concentrates were determined at 25 by centrifugation according to the Chevalier (1993) method.Complementary analysisProtein, ash, fat and moisture determinations of orange DF were carried out by standard procedures (AOAC, 1997).Statistical analysisThree measurements were taken on

46、 each analysis, and the results were expressed as the mean of those values.standard deviation. Analysis of variance procedure (Statgraphics, 1993) was performed at p > 0.05 to study the variation among orange varieties. The Least Significant Difference (LSD) test was employed todetermine di.erenc

47、es among results.RESULTS AND DISCUSSIONDietary fiber contentInsoluble, soluble and total DF contents of orange DF concentrates are shown in Table 1. The insoluble DFwas the major fraction in orange DF concentrates, but a high soluble DF fraction content was obtained (11.3±13.0% DM). The high pr

48、esence of both fractions in orange DF concentrates indicates a DF with very good physiological e.ects, better than cereals which have a very low soluble DF proportion (0.40±3.17% DM) (Table 2). Insoluble DF is important to intestinal regulation, whereas the soluble fraction is involved in reduc

49、tion of both blood cholesterol and intestinal glucose absorption (Periago et al., 1993). Soluble DF was 30.6±36.2% of total DF content. This is a relatively high value in comparison with other fruit and vegetable processing by-products (Table 3).Total DF content of the three orange DF concentra

50、tes di.ered with orange variety (Table 1). DFconcentrate from Valencia Late showed the highest content (% DM) while that from Navel hadthe lowest (Table 1). As regards insoluble and soluble fractions of total DF, Valencia Late was significantly di.erent from the other two varieties, Navel an

51、d Salustiana, with the highest proportion of insoluble DF (%DM) and the lowest proportion of soluble DF (% DM).The main components of the insoluble fraction were neutral sugars, representing approximately 60%. The highest proportion of neutral sugars was found in orange DF concentrat

52、e from var. Salustiana and the lowest from var. Navel (Table 4). Klason lignin (% DM) and insoluble uronic acids (%DM) were highest in orange DF concentrate from Valencia Late.The soluble fraction of orange DF concentrates contained more uronic acids than neutral sugars (Table 4).Accor

53、ding to McPherson Kay (1982), the ripening of the plant cell is associated with a gradual shift in fiber composition toward increasing proportions of cellulose and lignin. In this study, the DF concentrate from Valencia Late, which came from the ripest fruit, did have the highest Klason lignin conte

54、nt, while cellulose and hemicelluloses, represented by neutral sugars, did not vary with the ripeness index.The orange DF concentrates were high in uronic acids (approximately 45% total DF) (Table 4) indicative of high proportions of pectins. These substances have important applications in the pharm

55、aceutical industry for their anti-diarrheal and detoxicant activities and for their regulation and protection of the gastro-intestinal tract (Pilnik and Voragen, 1992).Water and oil holding capacitiesThe WHC of orange DF concentrates was high, indicating that this material could be used as a functio

56、nalingredient to reduce calories, avoid syneresis and modify the viscosity and texture of formulated foods (Table 5 and Table 6). The WHC of DF concentrates from Navel and Salustiana oranges (10.02 and 10.32 g water/g fiber, respectively) were higher than that from Valencia Late (7.3 g water/g diber

57、) (Table 6). Both concentrates, from Navel and Salustiana, also had higher soluble DF content (Table 1) which is attributed to the WHC (McBurney et al., 1985; Adams et al., 1986).The OHC in the three orange DF concentrates were similar (Table 6) to those obtained by Chevalier (1993)in pea fiber and

58、by Femenia et al. (1997) in cauliflower fiber. This property makes these DF concentratesappropriate for stabilization of foods with a high percentage of fat and emulsions.Proximate compositionThe moisture of DF concentrates depends primarily on the intensity of the pulp dehydration during the proces

59、sing of DF concentrates. Indule rida, S.A. kept the moisture of all the orange DF concentrates under 10% to avoid the growth of microorganisms.Significant di.erences in the carbohydrate content of the orange DF concentrates were found among varieties. Valencia Late had the highest, followed by Navel, while Salustiana DF concentrate had the lowest (Table 7). These di.erences could be due to the ripeness of the original oranges because, accord

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论