等差数列与等比数列教学设计_第1页
等差数列与等比数列教学设计_第2页
等差数列与等比数列教学设计_第3页
等差数列与等比数列教学设计_第4页
等差数列与等比数列教学设计_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高三第一轮专题复习一、课程说明(一)教学目标:1.知识与能力:掌握等差、等比数列的概念、通项公式、前n项和公式及其他性质公式;进一步渗透方程思想、分类讨论思想、等价转化思想以及体会类比与归纳的数学方法。2.过程与方法:通过典例剖析进一步提高学生研究问题、分析问题与解决问题能力。3.情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯;激发学生求知欲,鼓励学生大胆尝试,敢于探索、创新的学习品质。(二)教材分析教材上基础知识详细,基本方法归纳基本到位,但对等差数列与等比数列的性质运用及通项公式,求和公式例题讲解不足。而数列作为一种特殊的,函数与函数

2、思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备,所以在本次复习中要弥补教材上的不足。(三)学习者特征分析高三学生,随着高二一年的学习,对于等差数列与等比数列的一些基础知识有点模糊,对性质运用,基本方法不够深入,但是基础知识还是比较好,而且思维敏捷,所以本次复习也有了针对性。(四)教学重点1.等差数列、等比数列概念,性质,和公式的理解。2.求等差数列、等比数列的通项公式,前n项和公式的基本方法。(五)教学难点1. 等差数列、等比数列性质的灵活运用。2.求 等差数列、等比数列通项公式,前n项和公式方法的相互渗透。二、课前准备(一)教学方法启发引导回顾旧知,通过常见重难题的讲

3、练结合,让学生在自我探究合作、交流中掌握等差数列和等比数列的知识,并能在高考中得分;(二)教学器材(根据辅导地点所定)若是教室则为多媒体设备,投影仪,扩音器;若在家中则借助小白板即可。(三)时间分配虽内容较多,但重难点突出,且有针对性,所以用三分之一的时间复习基础知识,用三分之二的时间重点讲解和练习性质及方法的运用,课后会有适量的作业巩固课堂所学。三、课程设计(教学过程)(一)基础知识巩固等差数列 等比数列定义通项公式前n项和公式 中项公式a,A,b成等差数列a,G,b成等比数列判定性质成等差数列成等比数列 ()有关等差、等比数列的结论1等差数列的任意连续项的和构成的数列仍为等差数列2等差数列

4、中,若,则3等比数列中,若,则4等比数列an的任意连续项的和构成的数列仍为等比数列5两个等差数列与的和差的数列仍为等差数列6两个等比数列与的积、商、倒数的数列、仍为等比数列(二)等差数列、等比数列性质的灵活运用典型题例示范讲解例1已知函数f(x)= (x<2)(1)求f(x)的反函数f-1(x);(2)设a1=1, =f-1(an)(nN*),求an;(3)设Sn=a12+a22+an2,bn=Sn+1Sn是否存在最小正整数m,使得对任意nN*,有bn<成立?若存在,求出m的值;若不存在,说明理由命题意图本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力知识依托本题

5、融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题错解分析本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列为桥梁求an,不易突破技巧与方法(2)问由式子得=4,构造等差数列,从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想解(1)设y=,x<2,x=,即y=f-1(x)= (x>0)(2),是公差为4的等差数列,a1=1,=+4(n1)=4n3,an>0,an=(3)bn=Sn+1Sn=an+12=,由bn<,得m>,设g(n)=,g(n

6、)=在nN*上是减函数,g(n)的最大值是g(1)=5,m>5,存在最小正整数m=6,使对任意nN*有bn<成立例2(由学生和老师共同完成)设等比数列an的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列lgan的前多少项和最大?(lg2=03,lg3=04)命题意图本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力知识依托本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列lgan为等差数列,分析该数列项的分布规律从而得解错解分析题设

7、条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方技巧与方法突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值解法一设公比为q,项数为2m,mN*,依题意有化简得设数列lgan前n项和为Sn,则Sn=lga1+lga1q2+lga1qn1=lga1n·q1+2+(n1)=nlga1+n(n1)·lgq=n(2lg2+lg3)n(n1)lg3=()·n2+(2lg2+lg

8、3)·n可见,当n=时,Sn最大而=5,故lgan的前5项和最大解法二接前,,于是lgan=lg108()n1=lg108+(n1)lg,数列lgan是以lg108为首项,以lg为公差的等差数列,令lgan0,得2lg2(n4)lg30,n=55由于nN*,可见数列lgan的前5项和最大例3(由学生和老师共同完成)等差数列an的前n项的和为30,前2m项的和为100,求它的前3m项的和为_解法一将Sm=30,S2m=100代入Sn=na1+d,得解法二由知,要求S3m只需求ma1+,将得ma1+d=70,S3m=210解法三由等差数列an的前n项和公式知,Sn是关于n的二次函数,即S

9、n=An2+Bn(A、B是常数)将Sm=30,S2m=100代入,得,S3m=A·(3m)2+B·3m=210解法四S3m=S2m+a2m+1+a2m+2+a3m=S2m+(a1+2md)+(am+2md)=S2m+(a1+am)+m·2md=S2m+Sm+2m2d由解法一知d=,代入得S3m=210解法五根据等差数列性质知Sm,S2mSm,S3mS2m也成等差数列,从而有2(S2mSm)=Sm+(S3mS2m)S3m=3(S2mSm)=210解法六Sn=na1+d,=a1+d点(n,)是直线y=+a1上的一串点,由三点(m,),(2m,),(3m,)共线,易得S

10、3m=3(S2mSm)=210解法七令m=1得S1=30,S2=100,得a1=30,a1+a2=100,a1=30,a2=70a3=70+(7030)=110S3=a1+a2+a3=210答案 210(三)十种求数列通项公式的方法(归纳总结,不用于课堂讲解,只是根据学生的掌握情况,个别指导,弥补学生没有掌握的那种方法)1、公式法(掌握!)例、 已知数列满足,求数列的通项公式。解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通

11、项公式。2、累加法(掌握!)例、 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。例、已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。3、累乘法(掌握!)例、 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例、已知数列满足,求的通项公式。解:因为所以用式式得则 故所以由,则,又知,则,代入得。所以,的通

12、项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。4、待定系数法(掌握!)例、 已知数列满足,求数列的通项公式。解:设将代入式,得,等式两边消去,得,两边除以,得代入式得由及式得,则,则数列是以为首项,以2为公比的等比数列,则,故。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例、 已知数列满足,求数列的通项公式。解:设将代入式,得整理得。令,则,代入式得由及式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知

13、数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例、 已知数列满足,求数列的通项公式。解:设将代入式,得,则等式两边消去,得,解方程组,则,代入式,得由及式,得则,故数列为以为首项,以2为公比的等比数列,因此,则。评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。5、对数变换法(了解)例、 已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设将式代入式,得,两边消去并整理,得,则,故代入式,得由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换

14、把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。6、迭代法(掌握!)例、 已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。7、数学归纳法(掌握!)例、 已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出

15、数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。8、换元法(了解)例、已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。9、不动点法(了解)例、 已知数列满足,求数列的通项公式。解:令,得,则是函数的两个不动点。因为。所以数列是以为首项,以为公比的等比数列,故,则。评注:本题解题的关键是先求出函数的不动点,即方程的两个根,进而可推出,从而可知数列为等比数列,

16、再求出数列的通项公式,最后求出数列的通项公式。例、 已知数列满足,求数列的通项公式。解:令,得,则是函数的不动点。因为,所以,所以数列是以为首项,以为公差的等差数列,则,故。评注:本题解题的关键是先求出函数的不动点,即方程的根,进而可推出,从而可知数列为等差数列,再求出数列的通项公式,最后求出数列的通项公式。10、特征根法(了解)例、已知数列满足,求数列的通项公式。解:的相应特征方程为,解之求特征根是,所以。由初始值,得方程组求得从而。评注:本题解题的关键是先求出特征方程的根。再由初始值确定出,从而可得数列的通项公式。(四)数列求和的方法(归纳总结,用来弥补学生没有掌握到的基本方法,根据学生情

17、况个别讲解)1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.等差数列求和公式:等比数列求和公式:常见的数列的前n项和:, 1+3+5+(2n-1)=,等.2、倒序相加法:类似于等差数列的前n项和的公式的推导方法。如果一个数列,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法.例1、 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得: 所

18、以.小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.针对训练3、求值:3、错位相减法:类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法.若,其中是等差数列,是公比为等比数列,令则两式相减并整理即得例2、(2008年全国第19题第(2)小题,满分6分)已知,求数列an的前n项和Sn.解:得小结:错位相减法的求解步骤:在等式两边同时乘以等比数列的公比;将两个等式相减;利用等比数列的前n项和的公式求和.针对训练4、求和:4、裂项相消法:把数列的通项拆成两项之差,即数列的每

19、一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等。用裂项相消法求和,需要掌握一些常见的裂项方法:(1),特别地当时,(2),特别地当时例3、数列的通项公式为,求它的前n项和解: =小结:裂项相消法求和的关键是数列的通项可以分解成两项的差,且这两项是同一数列的相邻两项,即这两项的结构应一致,并且消项时前后所剩的项数相同.针对训练5、求数列的前n项和.5、分组求和法:有一类数列,它既不是等差数列,也不是等比数列.若将这类数列适当拆开,可分为几个等差、等比数列或常见的数列,然后分别求和,再将其合并即可.例4、求和:解:小结:这是求和的常用方法,按照一定规律将数列分成等差(比)数列或常见的数列,使问题得到顺利求解.针对训练6、求和:()()()(五)、方法小结1解决等差数列和等比数列的问题时,通常考虑两类方法:基本量法:即运用条件转化为关于和的方程;巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量2深刻领会两类数列的性质,弄清通项和前项和公式的内在联系是解题的关键(六)、课后巩固练习基本训练1(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为,则这个数列有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论