等差数列与等比数列复习讲义(共4页)_第1页
等差数列与等比数列复习讲义(共4页)_第2页
等差数列与等比数列复习讲义(共4页)_第3页
等差数列与等比数列复习讲义(共4页)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选优质文档-倾情为你奉上§5-3 数列求和【知识要点】1、 等差数列前n项和Sn=_=_,推导方法:_;等比数列前n项和推导方法:乘公比,错位相减法。2、 数列求和的常用方法(1) 分组求和:把一个数列分成几个可以直接求和的数列。(2) 拆项相消:把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项求和。(3) 错位相减法:适合一个一个等差数列和一个等比数列对应项相乘构成的数列求和。(4) 倒序相加(5) 并项求和法3、 常见的拆项公式【例题分析】例1 求下列各式的和:练习1 1、设数列an满足(1) 求数列an的通项;(2) 设求数列bn的前n项和Sn2、已知等差数列an满足(1)求数列an的通项公式(2)求数列的前n项和例2 求下列数列的前n项和Sn例3 已知数列1,1,2,的各项由一个等比数列与一个首项为0的等差数列对应项相加而成,求这个数列的前10项和。例4 数列an中,a1=1,an+1=2an+2n.(1) 设,求证:数列bn是等差数列;(2) 求数列an的前n项和Sn例5 已知数列an是等差数列,且a1=2,a1+ a2+ a3=12(1) 求数列an的通项公式;(2) 令,求数列bn的前n项和的公式练习2 1、已知等差数列an的前n项和为Sn,a5=5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论