带电粒子在有界磁场中运动的临界问题例析_第1页
带电粒子在有界磁场中运动的临界问题例析_第2页
带电粒子在有界磁场中运动的临界问题例析_第3页
带电粒子在有界磁场中运动的临界问题例析_第4页
带电粒子在有界磁场中运动的临界问题例析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、带电粒子在有界磁场中运动的临界问题例析湖北省恩施高中 陈恩谱名师指路例1:如图所示,长为L的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B,板间距离也为L,板不带电现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是A使粒子的速度v<B使粒子的速度v>C使粒子的速度v>D使粒子的速度<v<【思维导引】本题是带电粒子在有界磁场中运动的临界问题六大类型之一,所有这些问题,其答题通用步骤是:第一步,找出轨迹圆圆心所有可能的位置,第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一

2、般至少5画个轨迹圆),第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点,利用临界轨迹圆,结合几何关系,算出对应的轨迹半径,进而计算相应的速度或者磁感应强度、时间等。【要点提醒】入射点和入射方向已知,入射速度大小不确定这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。【手把手】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上,根据左手定则,判断出圆心在直线的哪一侧,然后作出该垂线(如图甲)。图乙图甲【手把手】在该直线上从下往上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆和为临界轨迹圆。轨道半径小于轨迹圆或大

3、于轨迹圆的粒子,均可射出磁场而不打在极板上。【要点提醒】作图时注意只画在磁场中的圆弧部分(磁场中的轨迹),磁场外的圆弧部分不能画因为粒子在磁场外将做直线运动或其他运动,而且作多了还会遮蔽问题,影响对问题的判断。【手把手】在答题卡上答题时,只需将最终需要两条临界轨迹作在图上,然后利用几何知识计算出临界轨迹圆的半径,结合半径公式即可算出临界速度,最后给出速度允许的范围。【解答】AB(1)粒子擦着板从右边穿出时,圆心在O点,由几何关系,有 r12L2(r1)2 得 r1由 r1 得 v1 所以v>时粒子能从右边穿出(2)粒子擦着上板从左边穿出时,圆心在O点,由几何关系,有 r2由 r2 ,得

4、v2 所以v<时粒子能从左边穿出【解后反思】本题容易漏选A,出错的原因是作轨迹圆时,没有将r先取较小值再逐渐增大,从而未分析出粒子速度较小轨迹半径较小时,还可以从磁场左边界穿出的情况。例2:如图所示,在0xa、0y范围内有垂直手xOy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在0范围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射

5、出时的 (1)速度的大小;(2)速度方向与y轴正方向夹角的正弦。【思维导引】本题是带电粒子在有界磁场中运动的临界问题六大类型之二,所有这些问题,其答题通用步骤是:第一步,找出轨迹圆圆心所有可能的位置,第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点,利用临界轨迹圆,结合几何关系,算出对应的轨迹半径,进而计算相应的速度或者磁感应强度、时间等。【要点提醒】入射点和入射速度大小确定,但入射方向不确定这类问题的特点是:所有轨迹圆的圆心均在一个“以入射点为圆心,以为半径的圆”上即所谓“圆心圆”上。【手把手】本

6、题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O,入射点O到任一圆心的距离均为r,故所有轨迹圆的圆心均在一个“圆心圆”以入射点O为圆心、r为半径的圆周上;作出该圆心圆(如图甲)。图乙图甲【要点提醒】考虑到粒子是向右偏转,我们从最左边的轨迹圆画起这和前一个题型要求“半径从小逐渐取大”是同样的目的:避免打乱仗和漏掉其中一种情况。【手把手】取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹对应弦长大于轨迹对应弦长半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长。OyxCRDAaPv【手把

7、手】最后一个离开磁场的粒子在磁场中运动时间最长,由题意,该粒子在磁场中做圆周运动周期的四分之一,其圆心角为90°,由前述分析可知,轨迹对应圆心角为90°。【手把手】最后将轨迹作在答题卡的题图上,利用几何关系求出该临界轨迹圆的半径,进而求解速度的大小和方向。【解答】设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力得:,解得: 当a/2<R<a时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,t=T/4时,OCA=/2设最后离开磁场的粒子的发射方向与y轴正方

8、向的夹角为,由几何关系得:且 解得:【解后反思】本题容易出现由于作图不仔细而把握不住“轨迹对应弦长大于轨迹对应弦长半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长”的错误,从而误认为轨迹对应粒子在磁场中运动时间最长。应对这种失误的办法是:按一定顺序作图按粒子偏转方向移动圆心作图。【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向外,大小为B,沿x轴放置一个垂直于xOy平面的较大的荧光屏,P点位于荧光屏上,在y轴上的A点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为m、电荷量+q的同种粒

9、子,这些粒子打到荧光屏上能在屏上形成一条亮线,P点处在亮线上,已知OAOPl,求:(1)若能打到P点,则粒子速度的最小值为多少?(2)若能打到P点,则粒子在磁场中运动的最长时间为多少?【思维导引】本题是带电粒子在有界磁场中运动的临界问题六大类型之三,所有这些问题,其答题通用步骤如前文所述。【要点提醒】已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向这类问题的特点是:所有轨迹圆圆心均在入射点和出射点连线的中垂线上。【手把手】粒子既经过A点又经过P点,因此AP连线为粒子轨迹圆的一条弦,圆心必在该弦的中垂线上,作出该直线OM(如图甲)。O2O1O1图甲图乙MM【手把手】在OM上取不同点为

10、圆心、以圆心和A点连线长度为半径由小到大作出一系列圆(如图乙),其中轨迹对应半径最小,而轨迹对应粒子是O1点上方轨道半径最大的,由图可知其对应圆心角也最大。【手把手】将轨迹和作在答题卡上,然后有几何关系得出轨迹半径和圆心角,算出对应的速度和时间。x【答案】(1)v, (2)【解答】(1)粒子在磁场中运动,洛伦兹力提供向心力,设粒子的速度大小为v时,其在磁场中的运动半径为R,则由牛顿第二定律有:qvBm若粒子以最小的速度到达P点时,其轨迹一定是以AP为直径的圆(如图中圆O1所示)由几何关系知:sAP=R则粒子的最小速度v(2)粒子在磁场中的运动周期T设粒子在磁场中运动时其轨迹所对应的圆心角为,则

11、粒子在磁场中的运动时间为:由图可知,在磁场中运动时间最长的粒子的运动轨迹如图中圆O2所示,此时粒子的初速度方向竖直向上,则由几何关系有:则粒子在磁场中运动的最长时间:【解后反思】注意作好入射点和出射点连线的中垂线后,作轨迹圆时半径一定要由小到大取至少五个不同的值,这样才能领会到题意所需的临界轨迹。本题容易出错在把最小半径当做是OA=l,这是因为作图不够多,且分析不到位所致以AP为弦的所有圆周中,以AP为直径的圆周半径是最小的。30oyvLOPx解题高手【例1】在xOy平面上的某圆形区域内,存在一垂直纸面向里的匀强磁场,磁感应强度大小为B.一个质量为m、带电量为+q的带电粒子,由原点O开始沿x正

12、方向运动,进入该磁场区域后又射出该磁场;后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°(如图所示),已知P到O的距离为L,不计重力的影响。(1)若磁场区域的大小可根据需要而改变,试求粒子速度的最大可能值;(2)若粒子速度大小为,试求该圆形磁场区域的最小面积。30oyvLOPQCA图甲xPLOyv30oQCA图乙x【提示】本题是带电粒子在有界磁场中运动的临界问题六大类型之四:已知初、末速度的方向(所在直线),但未知初速度大小(即未知轨道半径大小).这类问题的特点是:所有轨迹圆的圆心均在初、末速度延长线形成的角的角平分线上。初、末速度所在直线必定与粒子的轨迹圆相切,轨迹圆圆

13、心到两条直线的距离(即轨道半径)相等,因此,圆心必位于初、末速度延长线形成的角的角平分线QC上(如图甲);在角平分线QC上取不同的点为圆心,由小到大作出一系列轨迹圆(如图乙),其中以C点为圆心轨迹是可能的轨迹圆中半径最大的,其对应的粒子速度也最大。图丙Ly30ovOQCAPx【解答】过P点作末速度所在直线,交x轴于Q点,经分析可知,粒子在磁场中作圆周运动的轨迹的圆心必在的角平分线QC上,如图甲所示。设粒子在磁场中作匀速圆周运动的轨道半径为r,则由牛顿第二定律,有 则 由此可知粒子速度越大,其轨道半径越大,由图乙可知,速度最大的粒子在磁场中运动轨迹的圆心是y轴上的C点。(1)如图丙所示,速度最大

14、时粒子的轨迹圆过O点、且与PQ相切于A点。Py30oxLO图丁AvCQDE由几何关系有 ,可得 由、求得 (2)将代入式,可得,粒子的运动轨迹是如图丁所示的轨迹圆,该轨迹圆与x轴相切于D点、与PQ相切于E点。连接DE,由几何关系可知由于D点、E点必须在磁场内,即线段DE在磁场内,故可知磁场面积最小时必定是以DE为直径(如图丁中所示)。即面积最小的磁场半径为 则磁场的最小面积为 【例2】如图所示,长方形abcd的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的圆弧和以O为圆心Od为半径的圆弧组成的区域内有垂直纸面向里的匀强磁场(eb边界上无磁场)磁感应强度

15、B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×l02m/s沿垂直ad方向且垂直于磁场射入磁场区域,则下列判断正确的是( )A. 从Od边射入的粒子,出射点全部分布在Oa边B. 从aO边射入的粒子,出射点全部分布在ab边C. 从Od边射入的粒子,出射点分布在ab边D. 从ad边射人的粒子,出射点全部通过b点【提示】本题是带电粒子在有界磁场中运动的临界问题六大类型之五:已知初速度的大小(即已知轨道半径大小)和方向,但入射点不确定.这类问题的特点是:所有轨迹圆的圆心均在将入射点组成的边界沿垂直入射速度方向平移

16、一个半径距离的曲线上。【解答】所有进入磁场的粒子的入射点均在dOb线上,将该曲线垂直速度向上平移一个半径后得到曲线Oaf,此即所有粒子在磁场中做圆周运动的圆心所在曲线,在该曲线上从下到上取点作为圆心、为半径作一系列轨迹圆,其中为从d点射入粒子的轨迹(圆心在O点),为从O点射入粒子的轨迹(圆心在a点),为从a点射入粒子的轨迹,从d、O之间入射粒子在磁场中转过1/4圆周后沿eb边界作直线运动最终汇聚于b点,从O、a之间入射粒子先作直线运动再进入磁场做圆周运动,由作图易知这些粒子也汇聚于b点。fff【答案】D【例3】如图所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速度v0平行于x

17、轴射出,在y轴右侧某一圆形区域加一垂直于xoy平面向里匀强磁场,磁感应强度大小为B. 为了使电子能从x轴上的Q(b,0)点射出磁场。试求满足条件的磁场的最小面积,并求出该磁场圆圆心的坐标。【提示】本题是带电粒子在有界磁场中运动的临界问题六大类型之六:已知初速度方向(所在直线)和出射点,但入射点不确定.这类问题的特点是:所有轨迹圆的圆心均在“以初速度所在直线为准线、出射点为焦点的抛物线”上。【解答】本题中,电子初速度所在直线已知,电子进入磁场的入射点在该直线上,则可知电子在磁场中作圆周运动的轨迹圆与该直线相切、且经过Q点,所以电子轨迹圆圆心到该直线和到Q点的距离相等,即电子轨迹圆圆心在以该直线为

18、准线、Q点为焦点的抛物线上。在该抛物线上从左向右去不同点为圆心,做出一些列轨迹圆,可以看出所有这些轨迹中轨迹所需圆形磁场的直径最小。【答案】,(b,)练习【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域有垂直于纸面向里的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种

19、数值已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。【提示】本题是带电粒子在有界磁场中运动的临界问题六大类型之一,入射点和入射方向已知,入射速度大小不确定这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 '图乙图甲a2a2aa【答案】竖直屏上发亮的范围从0到2a,水平屏上发亮的范围从2a到【解答】 粒子在0<x<a的区域中的运动属于初速度方向已知、大小

20、不确定的情况,在垂直初速度的直线(即y轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆与直线x=a相切,为能打到y轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆,粒子将进入x>a的区域,由对称性可知,粒子在x>a的区域内的轨迹圆圆心均在在x=2a直线上,在x=2a直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如图乙),其中轨迹圆'为半径最小的情况,轨迹圆为题目所要求的速度最大的粒子的轨迹。粒子在磁感应强度为B的匀强磁场中运动半径为: x 速度小的粒子将在x<a的区域走完半圆,射到竖直屏上。半圆的直径在y轴上,半径的范围从0到a,屏

21、上发亮的范围从0到2a。 轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在D点相切(虚线),OD=2a,这是水平屏上发亮范围的左边界。 速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C和,C在y轴上,有对称性可知在x=2a直线上。 设t1为粒子在0<x<a的区域中运动的时间,t2为在x>a的区域中运动的时间,由题意可知 ,由此解得: 由式和对称性可得 所以 即弧长NP为1/4圆周。因此,圆心在x轴上。 设速度为最大值粒子的轨道半径为R,有直角可得 由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标 【易错提

22、醒】本题容易把握不住隐含条件所有在x>a的区域内的轨迹圆圆心均在在x=2a直线上,从而造成在x>a的区域内的作图困难;另一方面,在x>a的区域内作轨迹圆时,半径未从轨迹圆半径开始取值,致使轨迹圆'未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x=a。p××××abcdO××××××××××××【练习2】如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于ad

23、边中点O的粒子源在abcd平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od边的夹角分布在0180°范围内。已知沿Od方向发射的粒子在t=t0时刻刚好从磁场边界cd上的p点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L,粒子重力不计,求:(1)粒子的比荷q/m;(2)假设粒子源发射的粒子在0180°范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;(3)从粒子发射到全部粒子离开磁场所用的时间。【提示】本题是带电粒子在有界磁场中运动的临界问题六大类型之二,入射点和入射速度大小确定,但入射方向不确定这类问题的特点是:所有轨迹圆的圆

24、心均在一个“以入射点为圆心,以为半径的圆”上即所谓“圆心圆”上。【答案】,5/6 ,O3p××××abcdO××××××××××××p××××abcdO××××××××××××图甲图乙O1O2O4【解答】以L为半径、O点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的

25、轨迹开始画起(轨迹),在“圆心圆”取不同点为圆心、以L为半径作出一系列圆(如图乙);其中轨迹与轨迹对称,在磁场中运动时间相同;轨迹并不经过c点,轨迹对应弦长短于轨迹对应弦长即沿轨迹运动的粒子最后离开磁场。(1)初速度沿Od方向发射的粒子在磁场中运动的轨迹如图,其园心为n,由几何关系有: , 粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得,得 (2)依题意,同一时刻仍在磁场中的粒子到O点距离相等。在t0时刻仍在磁场中的粒子应位于以O为园心,Op为半径的弧pw上。由图知 此时刻仍在磁场中的粒子数与总粒子数之比为5/6 (3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b点相交,设此粒子

26、运动轨迹对应的圆心角为,则 在磁场中运动的最长时间 所以从粒子发射到全部离开所用时间为。 【易错提醒】本题因作图不认真易错误地认为轨迹经过c点,认为轨迹对应弦长等于轨迹对应弦长,于是将轨迹对应粒子作为在磁场中运动时间最长的粒子进行计算;虽然计算出来结果正确,但依据错误。【练习3】如图所示,xOy平面内存在着沿y轴正方向的匀强电场一个质量为m,带电荷量为q的粒子从坐标原点O以速度v0沿x轴正方向开始运动当它经过图中虚线上的M(2a,a)点时,撤去电场,粒子继续运动一段时间后进入一个矩形匀强磁场区域(图中未画出),又从虚线上的某一位置N处沿y轴负方向运动并再次经过M点已知磁场方向垂直xOy平面(纸面)向里,磁感应强度大小为B,不计粒子的重力,试求:(1)电场强度的大小;(2)N点的坐标;(3)矩形磁场的最小面积【提示】本题是带电粒子在有界磁场中运动的临界

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论