年产1000吨青霉素工厂工艺设计_第1页
年产1000吨青霉素工厂工艺设计_第2页
年产1000吨青霉素工厂工艺设计_第3页
年产1000吨青霉素工厂工艺设计_第4页
年产1000吨青霉素工厂工艺设计_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、设计说明书 年产1000吨青霉素生产工厂工艺设计学院:生物与农业工程学院专业:生物工程姓名:学号:日期:2014年6月23日摘要 本设计以注射用青霉素为背景,青霉素是一种治疗革兰氏阳性菌引起的各种疾病的常用药物,生产方法主要有化学合成法、半合成法、微生物发酵法。来进行年产1000吨青霉素发酵工段工艺的设计,包括以下几部分内容:青霉素的背景知识及发酵生产工艺过程的简介;物料衡算和热量衡算;环境要求及废物处理和。另外,此设计还绘制了发酵车间布置图、发酵工艺流程图以及对生产过程中产生的废水、废气、废渣的处理作了简单的介绍。关键词:青霉素;发酵;工艺流程;生产目 录摘要21前言51.1青霉素的发现51

2、.2青霉素分子结构及分类61.3青霉素的单位61.4作用机理61.5青霉素的应用72生产工艺总述82.1 生产方法82.2 工艺流程图82.3 发酵工艺特点92.3.1菌种介绍92.3.2菌种的保藏9孢子的制备92.3.4种子制备102.3.5发酵培养基介绍102.3.6灭菌102.3.7发酵102.4 提炼工艺过程102.4.1发酵液预处理102.4.2提取112.4.3精制112.4.4成品鉴定113工艺条件计算123.1物料衡算123.1.1工艺技术指标及基础数据123.1.2发酵车间的物料衡算13 1000t/a青霉素发酵车间物料衡算153.2 能量衡算153.2.1发酵热的计算163

3、.2.2换热面积的计算163.2.3冷却水用量计算173.2.4蒸汽消耗量计算173.2.5无菌空气消耗计算184工厂设计194.1厂址选择194.1.1地理位置194.1.2周边环境194.1.3气候条件194.1.4厂址区域204.2工厂平面图204.2.1工厂总平面布置图204.2.2主要建构筑物215给排水225.1 生产用水情况概述及要求225.2 排水系统的划分和废水利用226环境保护236.1 生产过程中“三废”排放情况236.2 处理方案236.3 噪声控制237节能247.1 能耗分析247.2 节能措施241前言1.1青霉素的发现20世纪40年代以前,人类一直未能掌握一种能

4、高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。1928年,英国细菌学家Fleming发现污染在培养葡萄球菌的双蝶上的一株霉菌能杀死周围的葡萄球菌。他将此霉菌分离纯化后得到的菌株经鉴定为点青霉,并将这菌所产生的抗生物质命名为青霉素。目前世界青霉素年需求量为3.8万吨,但直接作为注射剂使用的青霉素G和作为口服剂使用的青霉素V仅占全部青霉素产品的20%,除了另外3%5%作为兽药或饲料添加剂使用外,大部分青霉素是作为制备6-氨基青霉素烷、7-氨基脱乙酰氧基头孢烯酸或

5、氯亚甲基头孢烯母核的原料,通过这些母核中间体转化成高附加值产品推向市场。据估计,在世界范围内目前对6-氨基青霉素烷的需求量约为25800吨,到2005年将达到32800吨;对7-氨基脱乙酰氧基头孢烯酸的需求量约为6000吨,到2005年为7000吨。到2005年,世界基本药物中,仅羟氨苄青霉素、氨苄青霉素和头孢氨苄3个品种的世界需求量将达17800吨。上述三种产品占抗感染药物原料药的78%,用于生产这些半合成产品所需消耗的青霉素约占全部产量的3/4。1953年5月,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。在1996年得到迅速扩展,当时全球青霉素原料药年产销量达4万吨左右,其中中国

6、的青霉素在国际市场的份额占到30%,且出口量猛增。截至目前,中国青霉素年发酵能力在1500吨以上的有华北制药3200吨,哈药集团为2100吨,山东鲁抗为1290吨,这三大青霉素生产企业年发酵能力为6590吨,年发酵能力超过1000吨的企业还有四川制药厂、河北制药集团和张家口制药总厂。中国目前是世界上最大青霉素生产国,青霉素原料主要出口市场是:印度、韩国、日本、台湾、德国、荷兰、爱尔兰、法国、香港和美国,这十大市场合计占中国总出口量的82%。青霉素工业钾盐的生产能力已占世界生产能力40000吨的40%,实际产量占世界的35.29%,特别是进入2000年,中国的原料药产量中有七种青霉素系列产品均呈

7、现增长趋势,其中哌拉西林增长了267%,以6-APA为中间体的系列产品阿莫西林增长69%,产量近2000吨。1.2青霉素分子结构及分类 青霉素(Benzylpenicillin/Penicillin)又被称为青霉素G、peillinG、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。图1 青霉素分子结构式理化性质:青霉素足抗菌索的一种,足指从青霉素培养液中提制的分子中含有青霉素烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生索。青霉索类抗生索是-内酰胺类中一大类抗生索的总称。但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏

8、,且其抗菌谱较窄,主要对革兰氏阳性菌有效。青霉素G有钾盐、钠盐之分,钾盐不仅不能直接静注,静脉滴注时,也要仔细计算钾离子量,以免注入人体形成高血钾而抑制心脏功能,造成死亡1。1.3青霉素的单位目前国际上青霉素活性单位表示方法有两种:一是指定单位(unit );二是活性质量(g),最早为青霉素规定的指定单位是:50mL肉汤培养基中恰能抑制标准金黄色葡萄菌生长的最小青霉素剂量为一个青霉素单位。在以后,证明了一个青霉素单位相当于0.6g青霉素钠。因此青霉素的质量单位为:0.6g青霉素钠等于1个青霉素单位。由此,lmg青霉素钠等于1667个青霉素单位(unit)2。1.4作用机理青霉素是内酰胺内抗生素

9、,作用机理如下: (1)通过竞争细菌的粘肽合成酶,即青霉素结合蛋白(penicillin binding proteins,PBP),抑制细胞壁的粘肽合成,造成细菌细胞壁缺损,大量的水分涌进细菌体内,使细菌肿胀、破裂、死亡; (2)促发自溶酶活性,使细菌溶解。细菌具有特定的细胞壁合成需要的合成酶,即青霉素结合蛋白(penicillin binding proteins, PBP)当-内酰胺类抗菌药物与PBP结合后,PBP便失去酶的活性,是细胞壁的合成受到阻碍,最终造成细胞溶解、细菌死亡。PBP按分子量的不同可分为五种:每种又有若干亚型,这些PBP存在于细菌细胞的质膜中,对细菌细胞壁的合成起不同

10、的作用。最初青霉素的生产菌是音符型青霉菌,生产能力只有几十个单位,不能满足工业需要。随后找到了适合于深层培养的橄榄型青霉菌,即产黄青霉(P. chrosogenum),生产能力为100U/ml。经过X、紫外线诱变,生产能力达到10001500U/ml。随后经过诱变,得到不产生色素的变种,目前生产能力可达6600070000U/ml。青霉素是抗生素工业的首要产品。1.5青霉素的应用临床应用:40多年,主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。优点:毒性小,但由于难以分离除

11、去青霉曝哩酸蛋白(微量可能引起过敏反应),需要皮试。各种半合成抗生素的原料:青霉素的缺点是对酸不稳定,不能口服,排泄快,对革兰氏阴性菌无效。氨节青霉素耐酸广谱;对抗绿脓杆菌的磺节青霉素,耐酸、耐酶、口服的乙氧蔡青霉素等。提供头抱菌素母核3。药理毒性:青霉素药理作用是干扰细菌细胞壁的合成。青毒索的结构与细胞壁的成分粘肽结构中的D-丙氨酞-D-丙氨酸近似,可与后者竞争转肤酶,阻碍粘肽的形成,造成细胞壁的缺损,使细菌失去细胞壁的渗透屏障,对细菌起到杀灭作用。青霉素类抗生索的毒性很小,由于-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下

12、,其毒性不甚明显。是化疗指数最人的抗生素。但其青毒索类抗生素常见的过敏反应在各种药物中居首位,发生率最高可达5-10%,为皮肤反应,表现皮疹、血管性水肿,最严重者为过敏性休克,多在注射后数分钟内发生,症状为呼吸困难、血压下降、昏迷,最后惊厥,抢救不及时可造成死亡。各种给药途径或应用各种制剂都能引起过敏性休克,但以注射用药的发生率最高4。2生产工艺总述2.1 生产方法 青霉素G生产可分为菌种发酵和提取精制两个步骤。菌种发酵:将产黄青霉菌接种到固体培养基上,在25 下培养710天,即可得青霉菌抱子培养物。用无菌水将抱子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27下培养242

13、8h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。提取精制:将青霉素发酵液冷却,过滤。滤液在pH22.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.07.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得5。2.2 工艺流程图图2 青霉素工艺流程图2.3 发酵工艺特点2.3.1菌种介绍 青霉是产生青霉素的重要菌种。广泛分布于空气、土壤和各种物上,常生长在腐

14、烂的柑桔皮上呈青绿色。目前己发现几百种,其中产黄青霉(Penicillumchrysogenum)、点青霉(Penicillum nototum)等都能大量产生青霉素。青霉素的发现和大规模地生产、应用,不仅对抗生素工业的发展起了巨大的推动作用,而且加上其他抗生素的广泛使用,比如像磺胺药物,使人类的平均寿命,再次延长了四岁。此外,有的青霉菌还用于生产灰黄霉素及磷酸二酯酶、纤维素酶等酶制剂和有机酸。2.3.2菌种的保藏 菌种的保藏方法有:斜面菌种低温保藏法、砂土管保藏法、甘油封藏法、真空冷冻干燥法。孢子的制备 这是发酵工序的开端,是一个重要环节。抗生素产量和成品质量同菌种性能以及同孢子和种子的情况

15、有密切关系。生产用的孢子需经过纯种和生产能力的检验,符合规定的才能用来制备种子。保藏在砂土管或冷冻干燥管中的菌种经无菌手续接入适合于孢子发芽或菌丝生长的斜面培养基中,经培养成熟后挑选菌落正常的孢子可再一次接入试管斜面。对于产孢子能力强的及孢子发芽、生长繁殖快的菌种可以采用固体培养基孢子,孢子可直接作为种子罐的种子。2.3.4种子制备 种子制备是指孢子接入种子罐后,在罐中繁殖成大量菌丝的过程,其目的是使孢子发芽、繁殖和获得足够数量的菌丝,以便接种到发酵罐当中去。种子制备所使用的培养基及其它工艺条件,都要有利于孢子发芽和菌丝繁殖。 种子罐级数是在指制备种子需逐级扩大培养的次数,一般根据种子的生长特

16、性、孢子发芽及菌体繁殖速度,以及发酵罐的容积而定。青霉素种子制备一般为二级种子罐扩大培养。2.3.5发酵培养基介绍 培养基是供微生物生长繁殖和合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量等。青霉素的发酵培养基由碳源、氮源、无机盐及金属离子、添加前体、消沫剂五部分组成。2.3.6灭菌 在青霉素的生产中,对培养基和发酵罐主要采用的是湿热蒸汽灭菌和空气过滤除菌的方法。2.3.7发酵 这一过程的目的主要是为了使微生物分泌大量的抗生素。发酵开始前,有关设备和培养基必须先经过灭菌,后接入种子。接种量一般为52

17、0%。发酵周期一般为45天,但也有少于24小时,或长达二周以上的。在整个过程中,需要不断通气和搅拌,维持一定的罐温和罐压,并隔一段时间取样进行生化分析和无菌试验,观察代谢变化、抗生素产生情况和有无杂菌污染6。2.4 提炼工艺过程 2.4.1发酵液预处理 发酵液中的杂质如高价无机离子(Fe2+, Ca2+, Mg2+)和蛋白质在离子交换的过程中对提炼影响甚大,不利于树脂对抗生素的吸收。如用溶媒萃取法提炼时,蛋白质的存在会产生乳化,使溶媒合水相分离困难。对高价离子的去除,可采用草酸或磷酸。如加草酸则它与钙离子生成的草酸钙还能促使蛋白质凝固以提高发酵滤液的质量。如加磷酸(或磷酸盐),既能降低钙离子浓

18、度,也利于去除镁离子。 Na5P3O10+Mg2+MgNa3P3O10+ 2Na+ 加黄血盐及硫酸锌,则前者有利于去除铁离子,后者有利于凝固蛋白质。此外,两者还有协同作用。他们所产生的复盐对蛋白质有吸附作用7。2K4Fe(CN)6+3ZnSO4 K2ZnFe(CN)62+2Na+ 为了有效的去除发酵液中的蛋白质,需加入絮凝剂。絮凝剂是一种能溶于水的高分子化合物。含有很多离子化基团(如一NH2,一COOH,一OH)。2.4.2提取 化学提取和精制的目的:从发酵液中制取高纯度的、合乎药典的抗生素成品。 由于发酵液中青霉素浓度很低,仅0.14.5%左右,而杂质浓度比青霉素的高几十倍甚至几千倍,并且某

19、些杂质的性质与抗生素的非常相近,因此提取精制是一件十分重要的工作。 发酵液中常见的杂质有:菌丝、未用完的培养基、易污染杂菌、产生菌的代谢产物、预处理需要加入的杂质等。 在提炼过程中要遵循下面四个原则: 1、时间短 2、温度低 3、pH适中 4、勤清洗消毒 常用的提取方法有溶媒萃取法、离子交换法和沉淀法等8。2.4.3精制这是青霉素生产的最后工序。对产品进行精制、烘干和包装的阶段要符合“药品生产管理规范”的规定。2.4.4成品鉴定 成品鉴定是根据药典的要求逐项进行分析,包括效价鉴定、毒性试验、无菌检查、热源质试验、水分测定、水溶液酸碱度及混浊度测定、结晶颗粒的色泽及大小的测定等。对于药典上未有规

20、定的新抗生素,则可参照相近抗生素,按经验规定一些指标。3工艺条件计算3.1物料衡算3.1.1工艺技术指标及基础数据(1)主要技术指标见表1.表1. 工艺计算基础数据指标名称指标数及单位发酵单位80000/ml年产量1000t成品效率1000/mg年工作日300天产品日产量3334kg发酵周期120h发酵罐装料系数0.75发酵辅助时间12h发酵期间补葡萄糖量1.6kg/(m3h)菌种培养时间40h放罐发酵单位3500u/mL菌种培养辅助时间10h倒罐率2.0%接种量15%提取总收率0.45(2) 种子培养基(g/L) KH2PO4 0.592,黄豆饼粉 16.50,葡萄糖 4.93,碳酸钙 0.

21、15,硝酸钾 0.15,玉米油 0.236,油酸甘油酯 4.02,豆油 9.045,硅油 0.021.(3) 发酵初始培养基(g/L) KH2PO4 1.63,黄豆饼粉 45.30,葡萄糖 4.93,碳酸钙 0.15,硝酸钾 0.15,玉米油 0.79,油酸甘油酯 3.42,豆油 7.53,硅油 0.056.(4) 发酵培养基补料(g/L) 油酸甘油酯 16.571,豆油 19.333,氨水(26%)12.264。3.1.2发酵车间的物料衡算 首先计算生产1000kg活度为1000u/mg的青霉素产品需耗用的原材料及其他物料量9。(1) 放罐成熟发酵液量成熟发酵液放罐单位为3500u/mL,生

22、产1000kg产品发酵液量为:公式中 45%-青霉素产品总提取率 98%-除去倒罐率2%后的发酵成功率(2) 底罐城市发酵液量分为三个部分组成底料 种液量补料量底料的物料用量:发酵培养基配方种液的物料用量:培养基配方补料中的豆油、油酸甘油酯、氨水各按用量计算,分别流加。(3)配制发酵液底料所用黄豆饼粉量公式中 45.3-发酵液底料含黄豆饼粉量(4) 种子培养液所需黄豆饼粉量公式中 16.50-二级种液含黄豆饼粉量(5) 生产1000kg青霉素产品需黄豆饼粉总量同理,可计算生产1000kg青霉素产品其他物料用量。(6) 耗用葡萄糖总量公式中 16.42-发酵液含葡萄糖量 4.93-种液含葡萄糖量

23、(7) 碳酸钙耗用量(8) 硝酸钾耗用量(9) 磷酸二氢钾耗用量(10) 油酸甘油酸耗用量(11) 豆油耗用量(12) 玉米油耗用量(13) 硅油耗用量(14) 氨水(26%)耗用量 1000t/a青霉素发酵车间物料衡算 由上述生产1000kg活度为1000u/mg的青霉素产品需耗用的原材料及其他物料量的衡算结果,可求得1000t/a该青霉素发酵车间的物料平衡计算。具体计算结果如表2.表2.1000t/a青霉素发酵车间的物料衡算表物料名称生产1t青霉素物料量1000t/a青霉素成产的物料量每日物料量成品青霉素量/kg100010003334发酵液量/m3647.9647.92160二级种液量/

24、m397.297.2324黄豆饼粉/kg236152361578716葡萄糖量/kg8458845828193碳酸钙量/kg87.587.5291.7硝酸钾量/kg87.587.5291.7磷酸二氢钾量/kg849.6849.62832油酸甘油酸量/kg3126.33126.310421豆油量/kg5791.15791.119304玉米油量/kg406.8406.81356硅油量/kg29.2529.2597.5氨水量/kg59575957198573.2 能量衡算3.2.1发酵热的计算发酵过程中的热平衡方程式为: (1)生物热 通过生物合成热计算生物热,基本上生物热主要由葡萄糖氧化产生热量,

25、其反应式如下: 据物料衡算知每周期葡萄糖用量为故每周期生物热为:(2)搅拌热由发酵工厂设计概论一得知书中: 由设备选型知由经验值得电机的效率为则(3)蒸发热和辐射热由实际经验得一般 (4)发酵热 3.2.2换热面积的计算 根据实际生产经验,冷却水进口温度为20,出口温度为23,发酵平均维持温度为25则又由发酵工厂工艺设计概论得知换热买面积的计算公式为:式中:-发酵液每小时放出的最大热量 -换热装置传热系数 -平均温差 本设计采用列管式换热器,查资料得其换热系数,故有换热面积 3.2.3冷却水用量计算 查表得水的比热容为又水的进口温度为 为保证冷却水充足取裕量系数为1.2则每周期冷却水用量 故每

26、年冷却水用量为3.2.4蒸汽消耗量计算 本设计采用实罐灭菌,即先将蒸汽直接通入罐内与培养基混合,使罐温预热到80-90后,迅速将温度上升到120进行保温灭菌,一般先计算直接蒸汽混合加热用量,然后保温时间内的蒸汽量按升温用蒸汽量得30-50%进行计算10。 (1)升温阶段蒸汽用量计算参照发酵工厂工艺设计一书的公式:升温阶段蒸汽用量为式中 G-被加热料液量 C-料液比热容 -加热结束时料液的温度 -加热开始时料液的温度 -蒸汽烩, -热损失,一般为被加热料液量料液比热容本设计取 时为满足灭菌要求本设计取热损失则 (2)保温是蒸汽用量 (3)一周期蒸汽总用量(4)全年蒸汽用量 3.2.5无菌空气消耗

27、计算 查阅参考文献得知青霉素发酵时的好痒速率一般为由抗生素生产工艺学知耗氧速率与空气流量有如下关系式: 式中-耗氧速率, -进口空气氧含量 -出口空气氧含量 -空气流量,据一般生产的经验有 又由前面物料衡算知故有每分钟的无菌空气的消耗量为:4工厂设计4.主要建构筑物表3.青霉素生产工厂建构筑物明细表编号名称规格(m)1动物房20X102锅炉20X103机修20X104配电20X105冷冻站20X106水站20X107青霉素生产区50X358制剂生产区20X159仓库10X1510车库10X1511食堂10X1512招待所10X1513休闲绿化区35X514科研质检楼20X7.515办公楼20X

28、7.55给排水5.1 生产用水情况概述及要求 生产中用水5由三部分组成:工艺用水、冷却用水、洗涤用水。工艺用水指配料水和用来制备软水、无盐水等的一次水,质量要求达到或接近城市自来水标准。工艺用水消耗量一般为总量的5。90以上的水是用来冷却,冷却水应尽量循环使用,其质量要求比工艺用水底,应不含泥沙、悬浮物,浊度一般不大于100度即可,但不应还有对管道、设备有腐蚀性的物质。洗涤用水一般为自来水或无菌水。5.2 排水系统的划分和废水利用废水分两种:一是达到排放标准,可直接排放的水;二是含杂质、有机化学物质较多的水,需经废水回收站的污水处理后方可排放。青霉素生产废水含有大量有机物,COD值高达1-2万

29、mg/L。处理方法在加有青霉素废水的曝气池中接种活性污泥,对微生物进行驯化控制进水值及反应温度,确定合适的好氧-厌氧处理周期,即曝气时间与闲置时间的分配。运行时,按间歇式进水、反应、沉淀、排水、空载排泥工序在一个反应池内周期性进行,经过这样一个处理周期排出的水即可达到排放标准。采用这种工艺处理青霉素废水,不必进行预处理,对表面活性剂的降解去除率很高,硫酸根的存在对反应不产生影响,采用自控技术使得具有间歇式系统的运行实现自动化,管理简单易行。由于这种兼氧净化系统不需要一沉池,二沉池和污泥回流系统,因此可减少占地,降低造价,同时该系统中沉淀时没有进、出水的干扰,静沉,汲水分离效果好。反应池间歇进水、排放、高浓度污水是逐渐进入反应池的,有数小时的进水时间,且反应时流进的污水只占反应池容积的1/3-2/3,有稀释作用,所以耐浓度负荷冲击11。6环境保护6.1 生产过程中“三废”排放情况发酵工厂中排放出废水5、废气、废渣,尤其是废水对环境污染最严重。在啤酒生产中,生产每吨产品排放发酵液,这些废水若不经处理,直接排入江河流域,会使水质严重污染。6.2 处理方案(1) 本车间发酵过滤后的菌丝可供农村做肥料用。(2) 本厂设计拟在厂内特设一污水处理厂,对废水泄漏等要严密观察,处理后的水必须符合污水综合排放标准。(3)不得将与生产无关的用品带入车间。禁止在生产场所吸烟、进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论