人教版九年级上册数学复习资料_第1页
人教版九年级上册数学复习资料_第2页
人教版九年级上册数学复习资料_第3页
人教版九年级上册数学复习资料_第4页
人教版九年级上册数学复习资料_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2018年湛江市中考数学科复习考点九年级上册考点第一章 一元二次方程1、一元二次方程的概念:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程。一元二次方程的解就叫一元二次方程的根。2、一元二次方程的一般形式:a2x+bx+c=0(a、b、c分别为二次项系数;一次项系数;常数项)3、三种解一元二次方程的方法:(1)、配方法例:2x2+1=3x(解法在课本P7)(2)、公式法求根公式:x=-b±b2-4ac2a;判别式公式:=b2-4ac(3)、因式分解法(包括:提公因式法;完全平方公式及平方差公式法;十字相乘法)例:3x2+6x=0; x2-4x+4=

2、0; 9X2-1=0; X2-5X+6=0解:3x(x+2)=0 解:(x-2)2=0 解:(3x-1)(3x+1)=0 解:(x+2)(x-3)=0 x1=0;x2=-2 x1=x2=2 x1=x=13;x2=-13 x1=-2;x2=34、韦达定理如果方程a2x+bx+c=0有两根:x1与x2,那么x1+x2=-ba ;x1.x2=ca 5、用一元二次方程解实际问题(应用题)步骤:1、根据题意设未知数(x);2、根据题中数量关系列一元二次方程;3、 解方程(不符合题意的解舍去);4、做答第二章 二次函数知识点一:二次函数的定义1二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数其

3、中是二次项系数,是一次项系数,是常数项知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点2. 二次函数的图象与性质(1)二次函数基本形式的图象与性质:a的绝对值越大,抛物线的开口越小(2)的图象与性质:上加下减(3)的图象与性质:左加右减(4)二次函数的图象与性质3. 二次函数的图像与性质 (1)当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值 (2)当时,抛物线开口向下,对称轴为,顶点坐标为当时,随的增大而增大;当时,随的增大而减小;当时,有最大值4. 二次函数常见方法指导(1)二次函数图象的画法画精确图 五点绘图法(列表-描

4、点-连线)利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.画草图 抓住以下几点:开口方向,对称轴,与轴的交点,顶点.(2)二次函数图象的平移平移步骤: 将抛物线解析式转化成顶点式,确定其顶点坐标; 可以由抛物线经过适当的平移得到具体平移方法如下: 平移规律:概括成八个字“左加右减,上加下减”(3)用待定系数法求二次函数的解析式一般式:.已知图象上三点或三对、的值,通常选择一般式.顶点式:.已知图象的顶点或对称轴,通常选择顶点式.交点式: .已知图象与轴的交点坐标、,通常选择交点式.(4)求抛物线的顶点、对称轴的方法公式法:,顶点是,对称轴

5、是直线.配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线. 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.(5)抛物线中,的作用决定开口方向及开口大小,这与中的完全一样.和共同决定抛物线对称轴的位置由于抛物线的对称轴是直线,故如果时,对称轴为轴;如果(即、同号)时,对称轴在轴左侧;如果(即、异号)时,对称轴在轴右侧.的大小决定抛物线与轴交点的位置当时,所以抛物线与轴有且只有一个交点(0,),故如果,抛物线经过原点;如果,与轴交于正半轴;如果,与轴交于负半轴.知识点三:二次函数

6、与一元二次方程的关系5.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与轴交点的横坐标,因此二次函数图象与轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)轴与抛物线得交点为.(2)与轴平行的直线与抛物线有且只有一个交点(,

7、). (3)抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: 有两个交点抛物线与轴相交; 有一个交点(顶点在轴上)抛物线与轴相切; 没有交点抛物线与轴相离. (4)平行于轴的直线与抛物线的交点 同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根. (5)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定: 方程组有两组不同的解时与有两个交点; 方程组只有一组解时与只有一个交点; 方程组无解时与没有交点. (6)抛

8、物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.第三章 旋转知识点一 旋转的概念1.旋转的定义:把一个图形绕

9、着某一O转动一个角度的图形变换叫做旋转点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点A经过旋转变为点A,那么,这两个点叫做这个旋转的对应点.重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素.确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角作图的步骤:1)连接图形中的每一个关键点与旋转中心;&

10、#160;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角); (3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;第一章  (4)连接所得到的各对应点.知识点二、中心对称与中心对称图形 1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心这两个图形中的对应点叫做关于中心的对称点2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分(2)关于中心对称的两个图形是全等图形3.中心对称图形把一个图形绕着某

11、一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心  4.中心对称和中心对称图形的区别与联系  中心对称 中心对称图形区别  指两个全等图形之间的相互位置关系 指一个图形本身成中心对称对称中心不定 对称中心是图形自身或内部的点联系: 如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形 如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称 5. 关于原点对称的点的坐标特征:关于原点对称的两个点的横、纵坐标均

12、互为相反数.即P(x,y)关于原点的对称点Q(-x,-y)的坐标为,反之也成立知识点三、平移、轴对称、旋转 1.平移、旋转、轴对称之间的对比三、规律方法指导1.在学习了图形平移、轴对称的基础上,学习图形旋转的有关知识,要注意处理好如下三个问题:(1)先复习图形平移、轴对称的有关内容,学习时要采用对比的方法; (2)在对图形旋转性质探索过程中,要从图形变换前后的形状、大小和位置关系上入手分析,发现图形旋转的特性、对应关系、旋转中心和旋转方向;(3)利用旋转设计简单的图案,通过具体画图操作,掌握旋转图形的方法、技巧2.学习中心对称时,注意采用如下方法进行探究:(1)实物分析法:

13、观察具体事物的特征,结合所学知识,分析它们的共同特征和联系;(2)类比分析法:中心对称是一个图形旋转180°后能和另一个图形重合,离不开旋转的知识,因此要类比着进行学习,以提升对图形变换知识的掌握;(3)理论联系实际:在学习中可以通过具体画图操作,以及对具体事物的分析、归纳总结出中心对称的有关知识第四章 圆考点一、圆的相关概念1、圆的定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。2、圆的几何表示以点O为圆心的圆记作“O”,读作“圆O” 考点二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段

14、叫做弦。(如图中的AB)(2)直径经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论(重要)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平

15、分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。*推论2:圆的两条平行弦所夹的弧相等。考点四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。 2、弦心距从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等

16、。考点六、圆周角定理及其推论 1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。 第五章 2、圆周角定理(重要)一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2():半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 考点七、点和圆的位置关系设O的半径是r,点P到圆心O的距离为d则有:d<rÛ点P在O内;d=rÛ点P在O上; d>rÛ点P在O外。考点八、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做

17、直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果O的半径为r,圆心O到直线l的距离为d,那么:直线l与O相交Ûd<r; 直线l与O相切Ûd=r; 直线l与O相离Ûd>r;考点九、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补(重要),外角等于它的内对角。 即:在O中, 四边ABCD是内接四边形ÐC+ÐBAD=180° ÐB+ÐD=180°Ð

18、;DAE=ÐC考点十、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;第六章两个条件:过半径外端且垂直半径,二者缺一不可 即:MNOA且MN过半径OA外端 MN是O的切线 2、性质定理:切线垂直于过切点的半径(如上图)(记住理解即可,不会考证明题)考点十一、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:PA、PB是的两条切线 PA=PB;PO平分ÐBPA(用三角形全等证明)考点十二、弧长和扇形面积1、弧长公式半径为R的圆中,n°的圆心角所对的弧长l的计算公式:2、扇形面积公式

19、其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。 3、圆锥的侧面积其中l是圆锥的母线长,r是圆锥的地面半径。考点十三、圆幂定理(一般不会考)1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在O中,弦AB、CD相交于点P, 第七章PA×PB=PC×PD2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在O中,PA是切线,PB是割线 PA2=PC×PB3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在O中,PB、PE是割线 PC×P

20、B=PD×PE第五章 概率初步1、概率概念:对于一个随机事件A,我们把刻画其发生可能性大小的值,称为随机事件A发生的概率,记为P(A)。在一次实验中,共有n种结果,其中事件A中有m种结果发生,即事件A的概率为:P(A)=mn.(nm)2、事件类型:随机事件(概率大于0小于1);必然事件(概率等1);不可能事件(概率等0)。3、概率取值范围:0P(A)14、求概率的2种方法:(1)列表法(见课本P137)(2)树状图法(见课本P138)5、用频数去估计概率的应用:多次测试求出概率稳定在一个固定值,这个值即为估计概率,一般用于去估计一个大数据的概率进而去估计数量多少。例:全校共2000名

21、学生,抽样调查100人有20个喜欢跑步,估计全校喜欢跑步的人数为:2000X20100=400(人),(20100=15就是估计的概率)。九年级下册知识点第一章 反比列函数第一章 数与式:1、有理数整数正整数/0/负整数分数正分数/负分数数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数。任何一个有理数都可以用数轴上的一个点来表示。如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大

22、。正数大于0,负数小于0,正数大于负数。绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。有理数的运算:加法:同号相加,取相同的符号,把绝对值相加。异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘得0。乘积为1的两个有理数互为倒数。除法:除以一个数等于乘以一个数的倒数。0不能作除数。乘方:求N个相同因数A

23、的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘方,再算乘除,最后算加减,有括号要先算括号里的。2、实数无理数:无限不循环小数叫无理数平方根: 如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 如果一个数X的平方等于A,那么这个数X就叫做A的平方根 一个正数有2个平方根/0的平方根为0/负数没有平方根。求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根: 如果一个数X的立方等于A,那么这个数X就叫做A的立方根 正数的立方根是正数、0的立方根是0、负数的立方根是负数。求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:实数分有理数和无理数。在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论