课题:§2.4线性回归方程_第1页
课题:§2.4线性回归方程_第2页
课题:§2.4线性回归方程_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.课题:§2.4 线性回归方程上课时间: 主备:贾永亮 审核人:薛加付 姓名: 班级 【 点拨·导学 】(一)教学目标 1)通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;(2)在两个变量具有线性相关关系时,会在散点较长中作出线性直线,会用线性回归方程进行预测;(3)知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义教学重点散点图的画法,回归直线方程的求解方法教学难点回归直线方程的求解方法【新知探究】某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天

2、卖出热茶的杯数与当天气温的对照表:气温/C261813104杯数2024343850641问题:如果某天的气温是,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?知识点总结:(1)线性相关关系: 像能用直线方程近似表示的相关关系叫做线性相关关系.(2)线性回归方程:一般地,设有个观察数据如下:当使取得最小值时,就称为拟合这对数据的线性回归方程,该方程所表示的直线称为回归直线.上述式子展开后,是一个关于的二次多项式,应用配方法,可求出使为最小值时的的值即,(*) , 【 例题】例1 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,如果具有线性

3、相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由机动车辆数千台95110112120129135150180交通事故数千件6.27.57.78.58.79.810.213【 课后练习】(10分)1给出施化肥量对水稻产量影响的试验数据:施化肥量x15202530354045水稻产量y330345365405445450455(1)画出上表的散点图;(2)求出回归直线并且画出图形 城西分校高二(上)随堂练习NO:17课题:§2.4 线性回归方程上课时间: 主备:徐兴洲审核人:薛加付 姓名: 班级 一选择题(每题5分)1下列两个变量之间的关系哪个不是函数关系()A角度和它的余弦值B.正方形边长和面积C正边形的边数和它的内角和 D.人的年龄和身高2三点的线性回归方程是()A B C D 二.解答题L10分)3一个车间为了规定工时定额,需要确定加工零件所花费的时间为此进行了10次试验,测得数据如下:零件个数(个)102030405060708090100加工时间(分)62687

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论