(完整版)静止无功发生器(SVG原理简介)_第1页
(完整版)静止无功发生器(SVG原理简介)_第2页
(完整版)静止无功发生器(SVG原理简介)_第3页
(完整版)静止无功发生器(SVG原理简介)_第4页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PHIMIKAPHIMIKA静止无功发生器( SVG )原理简介深圳市兆晟科技有限公司飞明佳电气科技PHIMIKAPHIMIKA静止无功发生器( SVG )原理简介静止无功发生器(SVG)是指采用全控型电力电子器件组成的桥式变流器来进行动态无功补偿的装置。SVG的思想早在20世纪70年代就有人提出,1980年日本研制出了20MVA的采用强迫换相晶闸管桥式电路的SVG,1991 年和1994年日本和美国分别研制成功了80MVA和10OMVA的采用GTO 晶闸管的 SVG 。目前国际上有关SVG 的研究和将其应用于电网或工业实际的兴趣正是方兴未艾,国内有关的研究也已见诸报道。与传统的以TCR 为代

2、表的 SVC 相比 ,SVG 的调节速度更快,运行范围宽,而且在采取多重化或PWM技术等措施后可大大减少补偿电流中谐波的含量。更重要的是,SVG 使用的电抗器和电容元件远比SVC 中使用的电抗器和电容要小,这将大大缩小装置的体积和成本。由于SVG 具有如此优越的性能,是今后动态无功补偿装置的重要发展方向。一、 SVG 的基本原理及特点SVG 的基本原理是将桥式变流电路通过电抗器并联( 或直接并联 )在电网上 ,适当调节桥式变流电路交流侧输出电压的相位和幅值或者直接控制其交流侧电流, 使该电路吸收或者发出满足要求的无功电流 , 从而实现动态无功补偿的目的。在单相电路中 , 与基波无功功率有关的能

3、量是在电源和负载之间来回往返的。但是在平衡的三相电路中 , 不论负载的功率因数如何,三相瞬时功率之和是一定的, 在任何时刻都等于三相总的有功功率。因此总体上看, 在三相电路的电源和负载之间没有无功能量的来回往返, 无功能量是在三相之间来回往返的。所以 , 如果能用某种方法将三相各部分总体上统一起来处理, 则因为总体来看三相电路电源和负载间没有无功能量的传递,在总的负载侧就无需设置无功储能元件。三相桥式变流电路实际上就具有这种将三相各部分总体上统一起来处理的特点。因此,理论上讲 ,SVG的三相桥式变流电路的直流侧可以不设储能元件。但实际上, 考虑到交流电路吸收的电流并不仅含基波,其谐波的存在多少

4、会造成总体来看有少许无功能量在电源和SVG 之间往返。所以, 为维持桥式交流电路的正常工作,其直流侧仍需要一定大小的电感或电容作为储能元件,但所需储能元件的容量远比SVG 所能提供的无功容量要小 。而对传统的 SVC,其所需储能元件的容量至少要等于其所提供无功功率的容量。因此,SVG 中储能元件的体积和成本比同容量的SVC 中的大大减小。根据直流侧储能元件的不同,SVG分为采用电压型桥式电路和电流型桥式电路两种类型,其电路基本结构如图 1a 和1b 所示 ,分别采用电容和电感两种不同的储能元件。对电压型桥式电路,还需再串联上连接电抗器才能并入电网; 对电流型桥式电路, 还需在交流侧并联上吸收换

5、相过电压的电容器。实际上 , 由于运行效率的原因,迄今投入实用的SVG 大都采用电压型桥式电路, 因此目前 SVG往往专指采用自换相的电压型桥式电路作动态无功补偿的装置,飞明佳公司研发的SVG也是采用的该种方式。在以下的内容中,只介绍采用自换相电压型桥式电路的SVG 。由于 SVG 正常工作时就是通过电力电子开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压,就像一个电压型逆变器, 只不过其交流侧输出接的不是无源负载,而是电网。因此,当仅考虑基波时 SVG 可以等效地被视为幅值和相位均可控的与电网同频率的交流电压源。它通过交流电抗器连接到电网上。这样,SVG的工作原理可用图2a所示的等效

6、电路来说明。设电网电压和SVG 输出交流电压分别用相量? s 和 ? 1表示 ,则连接电抗X 上的电压 ? L 即为 ? s 和 ? 1 的相量差 ,而连接电抗的电流是可以由其电压来控制的。这个电流就是SVG 从电网吸收的电流?。因此 , 改变 SVG交流侧输出电压 ? 1的幅值及其相对于? s 的相位 ,就可以改变连接电抗上的电压,从而控制 SVG 从电网吸收电流的相位和幅值,也就控制了 SVG 吸收无功功率的性质和大小。在图 2a 的等效电路中,将连接电抗器视为纯电感,没有考虑其损耗以及变流器的损耗, 因此不必从电网吸收有功能量。在这种情况下,只需使 ?1与 ? s 同相,仅改变 ? 1的

7、幅值大小即可以控制 SVG 从电网吸收的电流? 是超前还是滞后90 , 并且能控制该电流的大小。如图2b 所示 ,当 U1大于 Us 时 , 电流超前电压90 ,SVG 吸收容性的无功功率;当U1小于 Us 时 , 电流滞后电压 90,SVG 吸收感性的无功功率。图 2 SVG等效电路及工作原理(不考虑损耗 ) a)单相等效电路b)工作相量图考虑到连接电抗器的损耗和变流器本身的损耗 ( 如管压降、线路电阻等 ), 并将总的损耗集中作为连接电抗器的电阻考虑 , 则 SVG 的实际等效电路如图 3a 所示 , 其电流超前和滞后工作的相量图如图 3b 所示。在这种情况下 , 变流器电压 ? 1 与电

8、流 ? 仍是 相差 90 , 因为变流器无需有功能量。而电网电压 ? S与电流 ? 的相差则不再是 90 , 而是比 90 小了 角 , 因此电网提供了有功功率来补充电路中的损耗 , 也就是说,相对于电网电压来讲 , 电流 ? 中有一定量的有功分量。这个 角也就是变流器电压 ? 1 与电网电压 ? s 的相位 差。改变这个相位差 , 并且改变 ? 1 的幅值 , 则产生的电流 ? 的相位和大小也就随之改变 , SVG 从电网吸收的无功功率也就因此得到调节。根据以上对工作原理的分析, 可得 SVG 的电压 -电流特性如图 4 所示。同 TCR 等传统 SVC 一样 , 改变控制系统的参数( 电网

9、电压的参考值U ref ),可以使得到的电压 - 电流特性上下移动。但是可以看出 ,与传统 SVC 电压 电流特性不同的是, 当电网电压下降, 补偿器的电压 - 电流特性向下调整时 ,SVG可以调整其变流器交流侧电压的幅值和相位, 以使其所能提供的最大无功电流ILmax 和Icmax 维持不变 , 仅受其电力电子器件的电流容量限制。而对传统的SVC, 由于其所能提供的最大电流分别是受其并联电抗器和并联电容器的阻抗特性限制的, 因而随着电压的降低而减小。因此SVG 的运行范围比传统 SVC 大 , SVC的运行范围是向下收缩的三角形区域, 而 SVG 的运行范围是上下等宽的近似矩形的区域。这是S

10、VG 优越于传统 SVC 的又一特点。图 4 SVG的电压 -电流特性此外,对于那些以输电补偿为目的SVG来讲,如果直流侧采用较大的储能电容或其他直流电源(如蓄电池组、采用电流型变流器时直流侧用超导储能装置等) ,则SVG还可以在必要时短时间内向电网提供一定量的有功功率。这对于电力系统来说是非常有益的 , 而又是传统的 SVC 所望尘莫及的。至于在传统 SVC 中令人头痛的谐波问题 , 在 SVG 中则完全可以采用桥式变流电路的多重化技术或 PWM 技术来进行处理 , 以消除次数较低的谐波 , 并使较高次数的谐波电流减小到可以接受的程度。还应指出,SVG 中连接电抗器的作用一是滤除电流中的高次

11、谐波,二是起到将变流器和电网连接起来的作用,所需的电感值不大,远小于补偿容量相同的TCR 所需的电感量。如果使用降压变压器将 SVG 连入电网,则还可利用变压器漏抗,所需的连接电抗器进一步减小。至此,SVG基本工作原理已结合其相对于传统SVC的优点进行了详细介绍。与SVC 相比,SVG也存在一定不足,包括:控制方法和控制系统比传统SVC复杂;要使用数量较多的大容量自关断器件,其价格比SVC 使用的普通晶闸管高得多;因此,SVG只需用小的储能元件而具有的总体成本的潜在优势,还有待于随着器件水平的提高和成本的降低来得以发挥。二、 SVG 的控制方法作为动态无功补偿装置的类型之一,SVG的控制不论是

12、从大的控制策略的选择来讲,还是从其外闭环反馈控制量和调节器的选取来说,其原则都与传统的SVC是完全一样的。,SVGSVC,SVC,SVC效电纳的参考值Bref, 以此信号来控制SVC调节到所需的等效电纳;而在SVG中,外闭环调节器输出的控制信号,则被视为补偿器应产生的无功电流(或无功功率)的参考值。正是在如何由无功电流(或无功功率)参考值调节SVG真正产生所需的无功电流(或无功功率)这个环节上,形成了 SVG 多种多样的具体控制方法 。 而这与传统 SVC 所采用的触发延迟角移相控制原理是完全不同的。由无功电流 ( 或无功功率 ) 参考值调节 SVG 产生所需无功电流 ( 或无功功率 ) 的具

13、体控制方法 , 可以分为间接控制和直接控制两大类。因为在系统电压值基本维持恒定时就是对无功功率的控制 , 因此以下均以无功电流的控制来说明。实际上该包括对有功电流的控制 , 以补偿电路中的有功损耗。,SVG, 对无功电流的控制也的电流控制任务中还应1.间接电流控制所谓间接电流控制 , 就是按照前述 SVG 的工作原理 , 将变流器所产生交流电压基波的相位和幅值的控制 , 来间接控制SVG 当作交流电压源看待SVG 的交流侧电流。,通过对SVG2.直接电流控制所谓电流的直接控制就是采用跟踪型PWM控制技术对电流波形的瞬时值进行反馈控制。其中的跟踪型PWM控制技术,可以采用滞环比较方式,也可以采用

14、三角波比较方式,其简单原理分别如图5a和b所示。其瞬时电流的参考值iref ,可以由瞬时电流无功分量的参考值与瞬时电流有功分量的参考值相加而得;也可以瞬时电流无功分量的参考值iQref为主,而根据SVG对有功能量的需求对iQref的相位进行修正来得到总的瞬时电流参考值iref。其中 ,瞬时电流无功分量的参考值可以由滞后于电源电压90 的正弦波信号与无功电流参考值IQref相乘得到,而 SVG 对有功功率的需求可以由直流侧电压的反馈控制来体现。SVG采用的是直接电流控制方法后其响应速度和控制精度将比间接控制法有很大提高。但是直接控制法由于是对电流瞬时值的跟踪控制,因而要求主电路电力电子器件有较高的开关频率,这对于较大容量的SVG目前还难以做到。下表列出了SVG和其他各种动态补偿方法的简要对比,大家可以一目了然的看出各种补偿方式的优

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论