徐州市七县(区)2016年中考二模数学试题(word解析版)_第1页
徐州市七县(区)2016年中考二模数学试题(word解析版)_第2页
徐州市七县(区)2016年中考二模数学试题(word解析版)_第3页
徐州市七县(区)2016年中考二模数学试题(word解析版)_第4页
徐州市七县(区)2016年中考二模数学试题(word解析版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.江苏省徐州市2016年九年级第二次质量检测数学试题及解析一、选择题1.-3的绝对值是 A. 3 B. -3 C. D. 【答案】A【分析】此题主要考察有理数的绝对值,根据一个负数的绝对值等于它的相反数化简即可.【解答】解:-3的绝对值是3.应选A.2以下运算正确的选项是 A.B.C. 2a+b=2a+b D.【答案】D【分析】此题考察了同底数幂的乘法,幂的乘方与积的乘方,单项式乘以单项式.根据同底数幂的乘法,幂的乘方与积的乘方及单项式乘以单项式的法那么进展运算即可. 【解答】解:A.,a少平方,故本选项错误;B.,不是同类型,不能合并,故本选项错误;C.2a+b=2a+b ,b少系数2,故本

2、选项错误;D. ,故本选项正确应选D.3世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果质量只有0.000000076克。将0.000000076用科学汇数法表小为 A.7.6108B.0.7610-9C. 7.610-8D.0.76109【答案】C【分析】此题主要考察科学记数法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要把原数变成a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数一样.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数,此时n的值为第一个有效数字前面所有0的个数.【解答】解:0.00000007

3、6克=7.610-8克.应选C.4等腰三角形的一个底角的度数为70,那么另外两个内角的度数分别是 A. 55,55B. 70,40C. 55,55或70,40D. 以上都不对【答案】B【分析】此题考察了三角形内角和定理和等腰三角形的性质,根据定理和性质,答案可得.【解答】解:70为底角,另一底角也为70.由三角形内角和为180,所以顶角为40;应选B.5一次函数y=kx+3经过点2,1,那么一次函数的图像经过的象限是 A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限【答案】B【分析】此题主要考察函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之

4、,满足解析式的点一定在函数的图象上.把点2,1代入y=kx+3,即可求出k的值,从而可确定一次函数图象的位置.【解答】解:一次函数y=kx+3经过点2,1,12k+3,k-1,一次函数y=kx+3图象经过二、四象限,又b30,直线y=kx+3与y轴交点在y轴的正半轴上,所以一次函数y=kx+3图象经过一、二、四象限.应选B.6五张标有2、2、3、4、5的卡片,除数字外,其他没有任何区别现将它们反面朝上,从中任取张,得到卡片的数宁为偶数的概率是 A.B.C. D. 【答案】C【分析】此题考察等可能条件下的概率的计算方法, PA=,n表示该试验中所有可能出现的根本结果的总数目,m表示事件A包含的试

5、验根本结果数;根据公式,答案可得.【解答】解:在此题中,出现偶数的结果数是3,那么从中任取一张,得到卡片的数宁为偶数的概率是,应选C.7以下几何体中,其主视图不是中心对称图形的是 A. B. C. D.【答案】B【分析】此题主要考察简单几何体的三视图和中心对称图形的定义.画出各个几何体的主视图,根据中心对称图形的定义进展判断.【解析】解:A.主视图是矩形,矩形是中心对称图形,故A不合题意;B.主视图是三角形,三角形不是中心对称图形,故B合题意;C.主视图是圆,圆是中心对称图形,故C不合题意;D.主视图是正方形,正方形是中心对称图形,故D不合题意.应选B.8如图,AB是O的直径,弦CDAB于点C

6、,点F是CD上一点,且满足,连接AF并延长交。O于点E,连接AD、DE,假设CF=2AF=3。给山以下结论: ADFAED;FG=3;。其中正确结论的个数的是 A. 1个B. 2个C. 3个D. 4个【答案】A【分析】此题考察了相似三角形的断定,垂径定理,圆周角定理等,分别根据条件,利用定理和性质,逐一判断,答案可得.【解答】解:由AB是O的直径,弦CDAB,根据垂径定理得到 ADS=AC,DG=CG所以得ADF=AED,再由FAD=DAE公共角,得证ADFAED,故正确;,CF=2,所以FD=6因此CD=DF+CF=8,CG=DG=4,从而可求得FG=CGCF=2,故错误; 题意可求得圆的半

7、径为,AG= , DG=4,tanE=tanADG ;故错误; 据和前面的结论,可以求得DAF面积:DFAG ,故错误;综上所述,正确的结论是.应选A.9分解因式。【答案】x+2x2【分析】此题主要考察平方差公式因式分解.能用平方差公式进展因式分解的式子的特点是:两项平方项,符号相反.直接利用平方差公式进展因式分解即可.【解答】解:x24=x+2x2.故答案为x+2x2.10假设有意义,那么x的取值范围是_。【答案】x3【分析】此题考察了二次根式有意义的条件,即被开方式大于等于0,根据题意得3-x0;解不等式即可.【解答】解:根据题意得:3-x0;解得:x3, 那么x的取值范围是x3故答案为x

8、3.11,假设,那么 =_。【答案】4【分析】此题主要考察代数式求值的方法.同时还隐含了整体的数学思想和正确运算的才能.由3x2+x6=0,得3x2+x=6.因为10-x-3x2=10-3x2+x,所以把3x2+x当成一个整体代入即可解答.【解答】解:由3x2+x6=0,得3x2+x=6,10-x-3x2=10-3x2+x10-64.故答案为4.12.抛物线的顶点坐标是_。【答案】2,-1【分析】抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标【解答】解:抛物线顶点式为y=x-2-1 ,顶点坐标是2,-1.故答案为2,-1.13阳光体育运动,要求学生每一天锻

9、炼一小时。如图是根据某班40名同学一周的体育锻炼时间绘制的条形统计图,那么关于该班50名同学一周参加体育锻炼时间的中位数为_小时。【答案】9【分析】此题主要考察中位数的定义以及条形统计图.考察了确定一组数据的中位数的才能和读图的才能.根据中位数的定义:中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数,进展解答即可.【解答】解:根据图表可知一周参加体育锻炼的共有50个人即有50个数据,所以中位数是按从小到大排列后第25,第26两个数的平均数作为中位数,根据图示可看出,这两个数都落在了9小时的范围内,故这组数据的中位数是9小时.故答案为9.1

10、4如图,将长为4cm,宽为2cm的矩形纸片ABCD沿着EF翻叠,使点A与C重合,那么折痕EF的长为_cm【答案】【分析】该题主要考察了翻折变换的性质、平行四边形的断定、勾股定理等几何知识点及其应用问题;结实掌握翻折变换的性质等几何知识点是解题的根底和关键如图,首先证明四边形AECF为平行四边形;运用勾股定理分别求出CF、AC的长度,运用平行四边形的面积公式,即可解决问题【解答】解:连接AC、AF;由题意得:EFAC,且OA=OC;四边形ABCD为矩形,FCAE,OAE=OCF;在AOE与COF中,AOECOFASA,AE=CF,四边形AECF为平行四边形;设AF=CF=,那么DF=12-;由勾

11、股定理得:2=4-2+2 2,解得:=2.5;由勾股定理得:AC 2=AB 2+BC 2,而AB=4,BC=2,AC=2;CFAD=ACEF,EF=,故答案为15平面坐标系中,点A坐标为2,1,连接OA把线段OA绕原点O逆时针旋转90,那么OA扫过的面积是_。【答案】【分析】此题主要考察扇形面积的计算,勾股定理.根据勾股定理求出OA的长,根据旋转角为90,可得OA扫过的面积是以OA为半径的圆心角为90度的扇形,根据扇形面积的计算公式即可求得结果.【解答】解:如图示点A的坐标为2,1,OA=,OA扫过的面积为:=.故答案为.16如图,AD是O的直径,ABC是O的内接三角形,AC=BC,DAB=5

12、0,那么ABC=_.【答案】70【分析】此题考察了圆周角定理注意准确作出辅助线是解此题的关键首先连接BD,由AD是O的直径,根据直径所对的圆周角是直角,可求得ABD=90,又由圆周角定理,可得D=C=40,继而求得答案【解答】解:连接BD,AD是O的直径,ABD=90,DAB=50,D=C=40, AC=BC,ABC= 180-C=70故答案为7017一副三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90,E=45,A=60,假设AB=DE=8,那么假设BE=_。结果保存根号【答案】8-2【分析】此题主要考察解直角三角形的性质及平行线的性质.解答此类题目的关键根据题意建立三角形利

13、用所学的三角函数的关系进展解答.过点B作BMFD于点M,根据题意可求出BC的长度,根据ABCF,可求出BCM的度数,从而可求出BM的长,然后在EFD中可求出EDF=45,进而可得BD的长,即可得BE的长.【解答】解:过点B作BMFD于点M.在ACB中,ACB=90,A=60,AB=8,ABC=30,BC=ABsin60=4.ABCF,BCMABC=30,BM=BCsin30=42.E=45,F=90,EDF=45,BD2,DE=8,BE8-2.故答案为8-2.18如图,正方形ABCD的边长为4,线段GH=AB,将GH的两端放在正力形的相邻的两边上同时滑动。假如G点从A点山发,沿图中所小方向按A

14、BCDA滑动到A止,同时点H从B点出发,沿图中所小方向按BCDAB直滑动到B止,在整个运动过程中,线段GH的中点P所经过的道路围成的图形的面积为_。【答案】16-4【分析】此题考察了直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点P到正方形各顶点的间隔 都为2,故点P所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,点P所经过的道路围成的图形的面积为正方形ABCD的面积减去4个扇形的面积【解答】解:根据题意得点P到正方形各顶点的间隔 都为2,点P所走的运动轨迹为以正方形各顶点为圆心,以2为半径的四个扇形,点

15、P所经过的道路围成的图形的面积为正方形ABCD的面积减去4个扇形的面积而正方形ABCD的面积为44=16,4个扇形的面积为4=4,点P所经过的道路围成的图形的面积为16-4故答案为16-419计算:1 ; 2 。【答案】解:1原式2+1+-4+-;2原式1.【解析】此题主要考察实数的运算,零指数幂,负整数指数幂,特殊角三角函数值,分式的混合运算.掌握法那么是解题的关键.1第一项根据负整数指数幂的法那么计算,第二项根据零指数幂的法那么计算,第四项根据特殊角三角函数值计算,然后再根据实数的运算法那么计算;2先把括号里的通分,再相减,然后把除法运算转化为乘法运算,再约分即可得结果.201解方程:2解

16、不等式组【答案】1解:方程可变形为2x-1x-2=0即2x-1=0,x-2=0;解得x=,x=2;2解:由得:x11,由得:x10,原不等式组的解集是10x11【解析】1利用因式分解法求得方程的解;2分别求出不等式组中两不等式的解集,找出解集的公共部分即可,不等式组的解集不外乎以下4种情况,口诀是:同大取大;同小取小;小大大小中间找;大大小小无处找.21在一个不透明的门袋里装有3个球,3个球分别标有数字1、2、3,这些球除了数字以外完全一样。1假如从袋中任意摸出一个球,那么摸到标有数宁是2的球的概率是_。2进展摸球游戏,游戏规那么如下:先由小A随机摸出一个球,记下球的数宁后放回,搅匀后再由小B

17、随机摸山一个球,记下球的数字。谁摸出的球的数字大,谁获胜。现请你利用树状图或列表的方法分析游戏规那么对双方是否公平?并说明理由。【答案】解:1从3个球中随机摸出一个,摸到标有数字是2的球的概率是或P摸到标有数字是2的球=;2游戏规那么对双方公平.树状图法:由图或表可知,P小明获胜=,P小东获胜=,P小明获胜=P小东获胜,游戏规那么对双方公平.【解析】此题主要考察游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否那么就不公平用到的知识点为:概率=所求情况数与总情况数之比.游戏是否公平,关键要看是否游戏双方赢的时机是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确

18、的情况下,判断双方取胜所包含的情况数目是否相等.22据国家教育部、卫生部最新调查说明:我国小学生近视率超过25,初中生近视率到达70,每年以8的速度增长,居世界第一位。某市为调查中学生的视力状况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成统计表和扇形统计图如图:解答以下问题:1扇形统计图中x=_;2该市共抽取了九年级学生_名;3假设该市今年共有九年级学生约8.5万名,请你估计该市九年级学生视力不良4.9以下的学生大约有多少名?【答案】11022000解:38500040%=34000人,所以估计该市九年级学生视力不良4.9以下的学生大约有34

19、000人【分析】此题考察了样本估计整体和扇形统计图1根据A、B、C 所占的百分比计算出D类所占的百分比;2从扇形统计图中得到A类占40%,然后用800除以40%得到所抽取的所有九年级的人数;3用 8.5万乘以到该市视力不良4.9以下的学生的百分比即可得到人数【解答】解:1100%-40%-30%-20%=10% ,故答案为10;280040%=2000人,所以该市共抽取了2000名九年级学生,故答案为2000;3见答案.23某物流公司承接A、B两种货物运输业务,3月份A货物运费单价为50元吨,B货物运费单价为30元吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费

20、单价增加了40,B货物运费单价上涨到40元吨;该物流公司4月承接的A种货物和B种货物的数量与3月份一样,4月份共收取运费13000元。试求该物流公司月运输A、B两种货物各多少吨?【答案】解:1设A种货物运输了x吨,设B种货物运输了y吨.依题意,得,解得.答:物流公司月运输A种货物100吨,B种货物150吨.【解析】此题考察二元一次方程组的应用.将现实生活中的事件与数学思想联络起来,读懂题意列出方程组即可求解.设A种货物运输了x吨,设B种货物运输了y吨,根据3月份共收取运费9500元,4月份共收取运费13000元得到一个关于x、y的方程组,解方程组求解即可.24如图,AB是半圆O的直径,点P是半

21、圆上不与点A、B重合的一个动点,延长A、B到点C,使PC=PB,D是AC的中点,连接PD、PO。1求证:2连接OD,当四边形BPDO是菱形时,求PBA的度数。【答案】解:1证明:PC=PB,D是AC的中点,DPAB,DP=AB,CPD=PBO,BO=AB,DP=BO,在CDP与POB中,CDPPOBSAS;2如图:连接OD,DPAB,DP=BO,四边形BPDO是平行四边形,四边形BPDO是菱形,PB=BO,PO=BO,PB=BO=PO,PBO是等边三角形,PBA的度数为60【解析】此题考察了菱形的断定,全等三角形的断定与性质,中位线的性质.1根据中位线的性质得到DPAB,DP=AB,由SAS可

22、证CDPPOB;2根据有一组对边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形,再根据邻边相等的平行性四边形是菱形,以及等边三角形的断定与性质即可求解.25在平面直角坐标系中,矩形OACB的顶点O坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点。1点D的坐标为_;2假设E为边OA上的一个动点,当CDE的周长最小时,求点E的坐标。【答案】解:10,2;2当CDE的周长最小时,DE+CE最小;作点D关于OA的对称点D,连接CD交OA于E,如下图:那么D0,2,DE=DE,DE+CE=DE+CECD,OBC=90,BD=6,ACOB,OEDAEC,

23、=,AE=2AE,OA=3,OE=1,E1,0.【分析】此题主要考察相似三角形的断定和性质.掌握相似三角形的断定和性质是解题的关键.1根据点B的位置和中点的定义即可得点D的坐标;2当CDE的周长最小时,DE+CE最小;作点D关于OA的对称点D,连接CD交OA于E,DE+CE最小,证明OEDAEC,得出比例式求出OE即可求出点E的坐标.【解答】解:1点B在y轴的正半轴上,OB4,点D为OB的中点,点D的坐标为0,2.故答案为0,2.2见答案.26如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点A、B两点除外,过M分别作MDOA于点C,MDOB于点D。1当点M在AB上运动

24、时,那么四边形OCMD的周长=_;2当四边形OCMD为正力形时,将正方形OCMD沿着。轴的正方向挪动,设平移的间隔 为。0a4,在平移过程中,当平移间隔 。是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?【答案】18解:2当四边形OCMD为正方形时,那么DM=NC=2,所以其面积为4;正方形OCMD的面积被直线AB分成l:3两个部分,就有S=1,S=3;如图2,当0a2,正方形OCMD与AOB重叠部分面积为S=-a+4;如图3,当2a4,正方形OCMD与AOB重叠部分面积为S=a-4;即当0a2,-a+4=1;或-a+4=3,解得a=,a=-舍,a=舍;即当0a2,a-4=1;或a

25、-4=3,解得a=4-,a=4+舍,a=4舍;所以当a=,a=4-,正方形OCMD的面积被直线AB分成l:3两个部分.【分析】此题主要考察的是正方形的性质,一元二次方程的应用.1设点M的横坐标为x,那么点M的纵坐标为-x+40x4,x0,-x+40用坐标表示线段的长度那么:MC=|-x+4|=-x+4,MD=|x|=x,根据四边形的周长计算方法计算即可发现,当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8 2 ,当0a2时,S=4- a2=- a2+4;当2a4时,S= 4-a2= a-42,解得即可【解答】解:1设点M的横坐标为x,那么点M的纵坐标为-x+40x4,-x+40

26、,那么:MC=|-x+4|=-x+4,MD=|x|=x,C 四边形OCMD=2MC+MD=2-x+4+x=8,当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8故答案为8;2见答案.27如图,点A2,2,B-4,-1在反比例函数的图像上,连接AB,分别交x、y轴与C、D两点;1请你直接写出C、D两点的半标:C_,D_;2证明:AD=BC;3如图2,假设M、N是反比例函数第三象限上的两个动点,连接AM、AN,分别交x、y轴与G、H两点,假设MAN=45,试求GOH的面积。【答案】解:1C-2,0,D0,1;2证明:作BEx轴,AFy轴,如图示:A2,2,B-4,-1,AF2,DF1

27、,EC2,EB1,AF=EC,DFEB,又AFD=CEB,AFDCEB,ADBC;3连接OA,过点A作APx轴,如图示:A2,2,APx轴,AOP45,AOP是直角三角形,OA2=22+22=8,AGO+GAO=AOP=45,又OAH+GAO=MAN=45,OAH=AGO,AOG=HOA=135,AGOHAO,OA2=OGOHSGOH=OGOH=84.【分析】此题主要考察点的坐标确实定,全等三角形的断定和性质,相似三角形的断定和性质,勾股定理.纯熟掌握断定和性质是解题的关键.1设直线AB的解析式为ykx+b,根据点A2,2,点B-4,-1可求得直线AB的解析式,从而可得点C、点D的坐标;2作B

28、Ex轴,AFy轴,根据点A、点B的坐标可得AF、DF、EC、EB的长,根据“SAS可得AFDCEB,根据全等三角形的性质可得结果;3连接OA,过点A作APx轴,根据勾股定理求得OA2的值,根据相似三角形的断定和性质,得OA2=OGOH,从而可求GOH的面积.【解答】解:1设直线AB的解析式为ykx+b,点A2,2,点B-4,-1,解得,直线AB的解析式为yx+1.直线AB分别与x轴交于点C,与y轴交于点D,点C-2,0,点D0,1.故答案为C-2,0,D0,1;2见答案;3见答案.28如图,二次函数的图像交x轴于点A、B,点A半标为3,0,与y轴交于点C,以OC、OA为边作矩形OADC,点E为线段OA上的动点,过点E作x轴的垂线分别交CA、CD和二次函数的图像于点M、F、P,连结PC。1写出点B的坐标_;2求线段PM长度的最大值;3试问:在CD上方的二次函数的图像部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?假设存在,求山此时点P的横坐标,并直接判断APCM的形状;假设不存在,请说明理由。【答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论