导数中有关单调区间问题_第1页
导数中有关单调区间问题_第2页
导数中有关单调区间问题_第3页
导数中有关单调区间问题_第4页
导数中有关单调区间问题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导数中有关单调区间问题一、相关结论1、 已知在D上单调递增(或递减)恒成立问题;2、 求的单调增区间(或减区间)解不等式问题:;3、 存在单调增区间(或减区间)有解;4、 在D上不单调的图像在区间D内部穿过x轴的至少有一个非重根在区间内部。二、经典范例例1、(09浙江文科)已知函数f(x)=x+(1-a) x-a(a+2)x+b(a,bR).(I)若函数f(x)的图像过原点,且在原点处的切线斜率是-3,求a,b的值;()若函数f(x)在区间(-1,1)上不单调,求a的取值范围。解析:()由题意得 又 ,解得,或 ()函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数

2、即函数在上存在零点,有 。练习1:(2009浙江理)已知函数,其中w.w.w.k.s.5.u.c.o.m (I)设函数若在区间上不单调,求的取值范围; (II)设函数 是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由解析:(I)因,因在区间上不单调,所以在上有实数解,且无重根,由得 w.w.w.k.s.5.u.c.o.m ,令有,记则在上单调递减,在上单调递增,所以有,于是,得,而当时有在上有两个相等的实根,故舍去,所以;w.w.w.k.s.5.u.c.o.m (II)当时有;当时有,因为当时不合题意,因此,下面讨论的情形,记A,B=()当

3、时,在上单调递增,所以要使成立,只能且,因此有,()当时,在上单调递减,所以要使成立,只能且,因此,综合()();当时A=B,则,即使得成立,因为在上单调递增,所以的值是唯一的;同理,即存在唯一的非零实数,要使成立,所以满足题意w.w.w.k.s.5.u.c.o.m 例2、(2009北京理)设函数()求曲线在点处的切线方程;()求函数的单调区间;()若函数在区间内单调递增,求的取值范围.【解析】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力(), 曲线在点处的切线方程为.()由,得,若,则当时,函数单调递减,当时,函数单调递增, 若,则当时,函数单

4、调递增,当时,函数单调递减,()由()知,若,则当且仅当,即时,函数内单调递增,若,则当且仅当,即时,函数内单调递增,综上可知,函数内单调递增时,的取值范围是.例3、(2009安徽卷文) 已知函数,a0,w.w.w.k.s.5.u.c.o.m ()讨论的单调性; ()设a=3,求在区间1,上值域。期中e=2.71828是自然对数的底数。【解析】(1)由于 令 w.w.w.k.s.5.u.c.o.m 当,即时, 恒成立.在(,0)及(0,)上都是增函数.当,即时w.w.w.k.s.5.u.c.o.m 由得或 w.w.w.k.s.5.u.c.o.m 或或又由得综上当时, 在上都是增函数.当时, 在

5、上是减函数, w.w.w.k.s.5.u.c.o.m 在上都是增函数.(2)当时,由(1)知在上是减函数.在上是增函数.又 w.w.w.k.s.5.u.c.o.m 函数在上的值域为 w.w.w.k.s.5.u.c.o.m 练习2、(2009安徽卷理)已知函数,讨论的单调性.解:的定义域是(0,+), w.w.w.k.s.5.u.c.o.m 设,二次方程的判别式. 当,即时,对一切都有,此时在上是增函数。 当,即时,仅对有,对其余的都有,此时在上也是增函数。 当,即时,方程有两个不同的实根,.+0_0+单调递增极大单调递减极小单调递增此时在上单调递增, 在是上单调递减, 在上单调递增.例4、已知

6、函数 (I)若时,求的极值; ()若存在的单调递减区间,求的取值范围; ()若图象与轴交于,的中点为, 求证:解:(I) 当时, 由或。x(0,1)1+单调递增极大值单调递减 时,无极小值。 ()存在单调递减区间, 在内有解,即在内有解。 若,则,在单调递增,不存在单调递减区间; 若,则函数的图象是开口向上的抛物线,且恒过点(0,1),要使在内有解,则应有或,由于,;若,则函数的图象是开口向下的抛物线,且恒过点(0,1),在内一定有解。综上,或。 ()依题意:,假设结论不成立,则有,得 由得,即设,则,令,在(0,1)上为增函数。,即,与式矛盾假设不成立,例5、设函数(I)若当时,取得极值,求的值,并讨论的单调性;(II)若存在极值,求的取值范围,并证明所有极值之和大于解:(),依题意有,故从而的定义域为,当时,;当时,;当时,从而,分别在区间单调增加,在区间单调减少()的定义域为,方程的判别式()若,即,在的定义域内,故的极值()若,则或若,当时,当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论