实验三 窗函数的特性分析_第1页
实验三 窗函数的特性分析_第2页
实验三 窗函数的特性分析_第3页
实验三 窗函数的特性分析_第4页
实验三 窗函数的特性分析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 本科学生实验报告学号 * 姓名 * 学院 物电学院 专业、班级 *实验课程名称 数字信号分析与处理 教师及职称 * 开课学期 2015 至 2016学年 下 学期填报时间 2016 年 3 月 25 日云南师范大学教务处编印一、验设计方案实验序号实验三实验名称窗函数的特性分析实验时间2016/3/25实验室同析楼三栋313实验室1实验目的 分析各种窗函数的时域和频域特性,灵活应用窗函数分析信号频谱和设计FIR数字滤波器。2 实验原理、实验流程或装置示意图 在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择对频谱分析和滤波器设计都起着重要的作用。在确定信号谱分析和随机

2、信号功率谱估计中,截短无穷长的序列会造成频率泄露,影响频率普分析的精确度和质量。合理选取窗函数的类型,可以改善泄露现象。在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器的幅度特性产生波动,且出出现过渡带。 【例1.3.1】 写出分析长度N=51点矩形窗的时域波行和频谱的MATLAB程序。 解 N=51;w=boxcar(N);W=fft(w,256);subplot(2,1,1);stem(0:N-1,w);subplot(2,1,2);plot(-128:127,abs(fftshift(W);运算结果如图1.3.1所示 图1.3.1 矩形窗的时域波形和频谱3实验设备

3、及材料 计算机,MATLAB软件4实验方法步骤及注意事项注意事项:(1) 在使用MATLAB时应注意中英输入法的切换,在中文输入法输入程序时得到的程序是错误的;(2) MATLAB中两个信号相乘表示为x.*u,中间有个.,同样两个信号相除也是如此;(3) 使用MATLAB编写程序时,应新建一个m文件,而不是直接在Comandante窗口下编写程序;(4) 在使用编程时,应该养成良好的编写习惯。 5实验数据处理方法 图像法6参考文献信号分析与处理MATLAB数值计算与方法二、报告1实验现象与结果实验内容 1.分析并绘出常用窗函数的时域波形特性。 N=51;w=boxcar(N);subplot(

4、3,1,1);stem(0:N-1,w);title(矩形窗的时域波形)w=hanning(N);subplot(3,1,2);stem(0:N-1,w);title(汉宁窗的时域波形)w=hamming(N);subplot(3,1,3);stem(0:N-1,w);title(汉明窗的时域波形) 实验运行结果如图 3.1 图3.1 矩形窗、汉宁窗及汉明窗的时域特性波形N=51;w=blackman(N);subplot(3,1,1);stem(0:N-1,w);title(布莱克曼窗的时域波形);w=bartlett(N);subplot(3,1,2);stem(0:N-1,w);titl

5、e(Bartlett窗的时域波形);beta=2*N;w=Kaiser(N,beta);subplot(3,1,3);stem(0:N-1,w);title(凯泽窗的时域波形);实验结果如图3.2所示 图3.2 布莱克曼窗、Bartlett窗、凯泽窗时域特性波形3. 研究凯泽窗(Kaiser)的参数选择对其时域和频域的影响。 (1)固定beta=4,分别取N=20,60,110N=20;beta=4;w=Kaiser(N,beta);subplot(3,2,1);stem(0:N-1,w);title(第3题凯泽窗N=20时域波形);W=fft(w,256);subplot(3,2,2);pl

6、ot(-128:127,abs(fftshift(W);title(第3题凯泽窗N=20频域波形 )N=60;w=Kaiser(N,beta);subplot(3,2,3);stem(0:N-1,w);title(第三题凯泽窗N=60波形);W=fft(w,256);subplot(3,2,4);plot(-128:127,abs(fftshift(W);title(第3题凯泽窗N=60频域波形 );N=110;w=Kaiser(N,beta);subplot(3,2,5);stem(0:N-1,w);title(第三题凯泽窗N=110波形);W=fft(w,256);subplot(3,2,

7、6);plot(-128:127,abs(fftshift(W);title(第3题凯泽窗N=110频域波形 )实验结果如图3.3 图3.3 N取不同值的时的时域和频域波形 (2)固定N=60,分别取beta=1,5,11.N=60beta=1;w=Kaiser(N,beta);subplot(3,2,1);stem(0:N-1,w);title(第3题凯泽窗beta=1时域波形);W=fft(w,256);subplot(3,2,2);plot(-128:127,abs(fftshift(W);title(第3题凯泽窗beta=1频域波形 )beta=5;w=Kaiser(N,beta);s

8、ubplot(3,2,3);stem(0:N-1,w);title(第三题凯泽窗beta=5波形);W=fft(w,256);subplot(3,2,4);plot(-128:127,abs(fftshift(W);title(第3题凯泽窗beta=5频域波形 ); beta=11;w=Kaiser(N,beta);subplot(3,2,5);stem(0:N-1,w);title(第三题凯泽窗beta=11波形);W=fft(w,256);subplot(3,2,6);plot(-128:127,abs(fftshift(W);title(第3题凯泽窗beta=11频域波形 );实验运行结

9、果如图3.4 图3.4 beta取不同值的时的时域和频域波形4.某序列为,使用fft函数分析其频谱。 (1)利用不同宽度的N的矩形窗截短该序列,N分别为20,40,160,观察不同长度N的窗对谱分析结果的影响。实验matlab程序代码N=20;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9*pi*k)/N);W=fft(w,256);subplot(3,1,1);plot(-128:127,abs(fftshift(W);title(第4题 xkN=20频谱 )subplot(3,1,2);N=40;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9

10、*pi*k)/N);W=fft(w,256);plot(-128:127,abs(fftshift(W);title(第4题 xkN=40频谱 )subplot(3,1,3);N=160;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9*pi*k)/N);W=fft(w,256);plot(-128:127,abs(fftshift(W);title(第4题 xkN=160频谱 )实验运行结果如图3.5 图3.5 不同宽度N的矩形窗对谱分析结果影响 (2)利用汉明窗重做(1)。 实验程序代码N=20;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9*

11、pi*k)/N).*(0.54-0.46.*cos(2*pi.*k/(N-1);W=fft(w,256);subplot(3,1,1);plot(-128:127,abs(fftshift(W),r);title(第4题 第二问xkN=20频谱 )subplot(3,1,2);N=40;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9*pi*k)/N).*(0.54-0.46.*cos(2*pi.*k/(N-1);W=fft(w,256);plot(-128:127,abs(fftshift(W),r);title(第4题 第二问xkN=40频谱 )subplot(3,1

12、,3);N=160;k=0:N-1;w=0.5*cos(11*pi*k)/N)+cos(9*pi*k)/N).*(0.54-0.46.*cos(2*pi.*k/(N-1);W=fft(w,256);plot(-128:127,abs(fftshift(W),r);title(第4题 第二问xkN=160频谱 ) 实验运行结果如图3.6 图3.6 不同宽度N的汉明窗对谱分析结果影响3 实验总结由实验结果可以看出矩形窗波形为方形,汉宁窗,汉明窗,布莱克曼窗,凯泽窗波形为正弦波形,Bartlett窗波形为三角形矩形窗,汉宁窗,汉明窗,布莱克曼窗,Bartlett窗的波形固定,一旦选择了某种窗函数,用它进行谱分析得到的频谱纹波或设计出的滤波器的阻带衰减是确定的。凯泽窗是一种可调窗,可以通过改变窗函数的形状来控制频谱纹波或阻带衰减指标,因而获得广泛的应用。 实验思考题:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论