版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、离散型随机变量离散型随机变量的分布列的分布列(二二)一、复习引入:一、复习引入:问题问题1:抛掷一个骰子,设得到的点数为:抛掷一个骰子,设得到的点数为,则,则的取值情况如何?的取值情况如何? 取各个值的概率分别是什么?取各个值的概率分别是什么?p213456616161616161问题问题2:连续抛掷两个骰子,得到的点数之和为:连续抛掷两个骰子,得到的点数之和为 ,则则取哪些值?各个对应的概率分别是什么?取哪些值?各个对应的概率分别是什么?p42356789101112361362363364365366365364363362361 表中从概率的角度指出了随机变量在随机试验表中从概率的角度指
2、出了随机变量在随机试验中取值的分布状况,称为随机变量的概率分布。中取值的分布状况,称为随机变量的概率分布。如何给出定义呢?如何给出定义呢?二、离散型随机变量的分布列二、离散型随机变量的分布列123,ix x xxx1x2xipp1p2pi称为随机变量称为随机变量的概率分布,简称的概率分布,简称的分布列。的分布列。则表则表(1,2,)ix i ()iiPxp取每一个值取每一个值 的概率的概率 设离散型随机变量设离散型随机变量可能取的值为可能取的值为1、概率分布(分布列)、概率分布(分布列)根据随机变量的意义与概率的性质,根据随机变量的意义与概率的性质,你能得出分布列有什么性质?你能得出分布列有什
3、么性质?离散型随机变量的分布列具有下述两个性质:离散型随机变量的分布列具有下述两个性质: 一般地,离散型随机变量在某一范围内的概一般地,离散型随机变量在某一范围内的概率等于它取这个范围内各个值的概率之和。率等于它取这个范围内各个值的概率之和。,321, 0).1( ipi1).2(321 ppp例、某一射手射击所得环数的分布列如下:例、某一射手射击所得环数的分布列如下:45678910p0.02 0.04 0.06 0.09 0.28 0.29 0.22求此射手求此射手“射击一次命中环数射击一次命中环数77”的概的概率率练习、随机变量练习、随机变量的分布列为的分布列为求常数求常数a。解:由离散
4、型随机变量的分布列的性质有解:由离散型随机变量的分布列的性质有20.160.31105aaa解得:解得:910a 35a (舍)或(舍)或-10123p0.16a/10a2a/50.3()kkn knPkC p q01knp00nnC p q111nnC p qkkn knC p q0nnnC p q( ; , )kkn knC p qb k n p( , )B n p我们称这样的随机变量我们称这样的随机变量服从二项分布,记服从二项分布,记作作 ,其中其中n,p为参数为参数,并记并记 如果在一次试验中某事件发生的概率是如果在一次试验中某事件发生的概率是p,那么在,那么在n次独立重复试验中这个事
5、件恰好发生次独立重复试验中这个事件恰好发生k次的概率是多次的概率是多少?在这个试验中,随机变量是什么?少?在这个试验中,随机变量是什么?2、二项分布、二项分布其中其中k=0,1,n.p=1-q.于是得到随机变量于是得到随机变量的概率分布如下:的概率分布如下:例例1 1、某厂生产电子元件,其产品的次品率为、某厂生产电子元件,其产品的次品率为5%.5%.现现从一批数量很大的产品中任意地连续取出从一批数量很大的产品中任意地连续取出2 2件,写出件,写出其中次品数其中次品数的概率分布。的概率分布。解:由题意,得到的次品数解:由题意,得到的次品数B(2B(2,5%)5%)P(=0)=022(9 5 %
6、)0 .9 0 2 5CP(=1)=12(5 % )(9 5 % )0 .0 9 5CP(=2)=222(5 % )0 .0 0 2 5C因此,次品数因此,次品数的概率分布如下:的概率分布如下:012 2p0.90250.0950.00250.0025三、例题选讲:三、例题选讲:例例2 2:一个口袋里有:一个口袋里有5 5只球只球, ,编号为编号为1,2,3,4,5,1,2,3,4,5,在袋中同在袋中同时取出时取出3 3只只, ,以以表示取出的表示取出的3 3个球中的最小号码个球中的最小号码, ,试写试写出出的分布列的分布列. . 解解: : 随机变量随机变量的可取值为的可取值为 1,2,3.
7、1,2,3.当当=1=1时时, ,即取出的三只球中的最小号码为即取出的三只球中的最小号码为1,1,则其它则其它两只球只能在编号为两只球只能在编号为2,3,4,52,3,4,5的四只球中任取两只的四只球中任取两只, ,故故有有P(P(=1)= =1)= =3/5;=3/5;3524/CC同理可得同理可得P(P(=2)=3/10=2)=3/10;P(;P(=3)=1/10.=3)=1/10. 因此因此,的分布列如下表所示的分布列如下表所示 1 2 3 p 3/5 3/10 1/10例例3:13:1名学生每天骑自行车上学名学生每天骑自行车上学, ,从家到学校的途中有从家到学校的途中有5 5个个交通岗
8、交通岗, ,假设他在交通岗遇到红灯的事件是独立的假设他在交通岗遇到红灯的事件是独立的, ,并且概并且概率都是率都是1/3.(1)1/3.(1)求这名学生在途中遇到红灯的次数求这名学生在途中遇到红灯的次数的分的分布列布列. .(2)(2)求这名学生在途中至少遇到一次红灯的概率求这名学生在途中至少遇到一次红灯的概率. .解解:(1):(1)B(5,1/3),B(5,1/3),的分布列为的分布列为 P( P(=k)= ,k=0,1,2,3,4,5.=k)= ,k=0,1,2,3,4,5.kkkC55)32()31(2)(2)所求的概率所求的概率:P(:P(1)=1-P(1)=1-P(=0)=1-32
9、/243=0)=1-32/243 =211/243. =211/243.例例4 4:将一枚骰子掷:将一枚骰子掷2 2次次, ,求下列随机变量的概率分布求下列随机变量的概率分布. .(1)(1)两次掷出的最大点数两次掷出的最大点数;(2);(2)两次掷出的最小点数两次掷出的最小点数; ;(3)(3)第一次第一次掷出的点数减去第二次掷出的点数之差掷出的点数减去第二次掷出的点数之差. .解解:(1):(1)=k=k包含两种情况包含两种情况, ,两次均为两次均为k k点点, ,或一个或一个k k点点, ,另另一个小于一个小于k k点点, ,故故P(P(=k)= ,k=k)= ,k=1,2,3,4,5,
10、6.1,2,3,4,5,6.3612662) 1(1 kk(3)(3)的取值范围是的取值范围是-5,-4,-5,-4,,4 4,5.5.=-5,=-5,即第一次即第一次是是1 1点,第二次是点,第二次是6 6点;点;,从而可得,从而可得的分布列是:的分布列是:(2)(2)=k=k包含两种情况包含两种情况, ,两次均为两次均为k k点点, ,或一个或一个k k点点, ,另另一一个大于个大于k k点点, ,故故P(P(=k)= ,k=k)= ,k=1,2,3,4,5,6.1,2,3,4,5,6.36213662)6(1kk -5-5 -4-4 -3-3 -2-2 -1-1 0 01 12 23 3
11、4 45 5 p p361362363364365366365364363362361例例5、在一袋中装有一只红球和九只白球。、在一袋中装有一只红球和九只白球。每次从袋中任取一球取后放回,直到取得每次从袋中任取一球取后放回,直到取得红球为止,求取球次数红球为止,求取球次数的分布列。的分布列。分析:分析:袋中虽然只有袋中虽然只有10个球,由于每次任取一球,个球,由于每次任取一球,取后又放回,因此应注意以下几点:取后又放回,因此应注意以下几点:(1)一次取球两个结果:取红球一次取球两个结果:取红球A或取白球或取白球,且,且P(A)=0.1;(2)取球次数取球次数可能取可能取1,2,;(3)由于取后放回。因此,各次取球相互独立。由于取后放回。因此,各次取球相互独立。1 . 09 . 0)()()()()()(111 kkkAPAPAPAPAAAAPkP 小结:本节学习的主要内容及学习目标要求:小结:本节学习的主要内容及学习目标要求:1 1、理解离散型随机变量的分布列的意义,会、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;求某些简单的离散型随机变量的分布列;2 2、掌握离散型随机变量的分布列的两个基本、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单问题;性质,并会用它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育课教案课件
- 北京市矢量地图-可改颜色
- 《全科医师培训眼科》课件
- 《光学概要》课件
- 《吉利收购沃尔沃初》课件
- 《级开发讲义》课件
- 五千以内加减混合两步运算竞赛检测口算题大全附答案
- 内护2型糖尿病
- 函数y=27x8+13x+arcsin6x的导数计算步骤
- 心理慰藉服务
- DLT 572-2021 电力变压器运行规程
- DL∕T 1764-2017 电力用户有序用电价值评估技术导则
- 四年级上册英语教案-UNIT FOUR REVISION lesson 14 北京版
- 公务员职业道德建设和素质能力提升培训课件(共37张)
- 营养风险筛查与评估课件(完整版)
- 2023年江西飞行学院招聘考试真题
- 2024入团积极分子入团考试题库(含答案)
- 对外投资合作国别(地区)指南 -巴林-20240529-00467
- 2024年小学科学新教材培训心得8篇
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
- 粪污处理产业发展政策与法规
评论
0/150
提交评论