202X202X学年高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修1_第1页
202X202X学年高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修1_第2页
202X202X学年高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修1_第3页
202X202X学年高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修1_第4页
202X202X学年高中数学第二章等式与不等式2.2.1不等式及其性质课件新人教B版必修1_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-1-2.2.1不等式及其性质不等式及其性质首页课前篇自主预习一二知识点一、不等关系与不等式填空:(1)不等式中自然语言与符号语言之间的转换.(2)不等式的定义:含有不等号的式子. 三四课前篇自主预习一二知识点二、实数大小的比较1.思考怎样比较a2+b2与2ab的大小关系?提示:(作差法)a2+b2-2ab=(a-b)20,a2+b22ab.三四课前篇自主预习一二2.填空:(1)数轴上的两点A,B的位置关系与其对应实数a,b的大小关系.数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.数轴上点的位置与实数大小的关系(表示实数a和b的两个点分别为A和B),如下:三四课前篇自主预习一二(2

2、)比较两个实数的大小. 三四课前篇自主预习一二答案:C 三四课前篇自主预习一二三四知识点三、不等式的性质1.不等式的性质(1)性质1:如果ab,那么a+cb+c;(2)性质2:如果ab,c0,那么acbc;(3)性质3:如果ab,c0,那么acb,bc,那么ac.(5)性质5:abbc,那么ac-b;(2)推论2:如果ab,cd,那么a+cb+d;(3)推论3:如果ab0,cd0,那么acbd;(4)推论4:如果ab0,那么anbn(nN,n1);课前篇自主预习一二三四3.利用不等式性质应注意哪些问题利用不等式性质应注意哪些问题?提示提示:在使用不等式时在使用不等式时,一定要弄清不等式一定要弄

3、清不等式(组组)成立的前提条件成立的前提条件.不可强化或弱化成立的条件不可强化或弱化成立的条件.如如“同向不等式才可相加、同向不等式才可相加、“同向且同向且两边同正的不等式才可相乘两边同正的不等式才可相乘;可乘性中的可乘性中的“c的符号等都需要注的符号等都需要注意意.4.做一做做一做ab,可以推出可以推出()解析解析:c20,ab,ac2bc2.答案答案:B课前篇自主预习一二三四5.做一做做一做判断以下说法是否正确判断以下说法是否正确,正确的在后面的括号里打正确的在后面的括号里打“,错误的错误的打打“.(1)假设假设ab,cb-d.()(2)假设假设ab,那么那么1ab0,cd0,那么那么ad

4、bc.()(4)ab,ef,c0,那么那么f-ace-bc.()答案答案:(1)(2)(3)(4)课前篇自主预习一二三四知识点四、直接证明与间接证明1.直接证明(1)综合法:一般地,利用条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.用P表示条件、已有的定义、公理、定理等,Q表示所要证明的结论,那么综合法可用框图表示为:PQ1Q1Q2Q2Q3QnQ课前篇自主预习一二三四(2)分析法:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(条件、定理、定义、公理等)为止,这种证明方

5、法叫做分析法.用Q表示要证明的结论,那么分析法可用框图表示为:Q P1P1 P2P2 P3得到一个明显成立的条件2.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.课前篇自主预习一二三四答案:C 课堂篇探究学习探究一探究二探究三探究四思维辨析应用不等式的性质证明不等式应用不等式的性质证明不等式 当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析反思感悟证明不等式的解题策略1.利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的根底上,记准、记熟不等式

6、的性质并注意在解题中灵活准确地加以应用.2.应用不等式的性质进展推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法那么.3.除了熟练掌握不等式的性质外,还应掌握一些常用的证明方法.如作差比较法、作商比较法、分析法等.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析利用不等式的性质求范围利用不等式的性质求范围例例2 (1)-6a8,2b3,那么那么2a+b的取值范围是的取值范围是, a-b的取的取值范围是值范围是. (2)函数函数f(x)=ax2-c,且且-4f(1)-1,-1f(2)5,求求f(

7、3)的取值范围的取值范围.(1)答案答案:(-10,19)(-9,6)当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析反思感悟利用不等式的性质求代数式的范围要注意的问题1.恰当设计解题步骤,合理利用不等式的性质.2.运用不等式的性质时要切实注意不等式性质的前提条件,切不可用似乎是很显然的理由,代替不等式范围的求解.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析延伸探究延伸探究在本例2(1)条件下,求ab和 的取值范围.解:(1)因为-6a8,2b3,所以当0a8时,0ab24,当-6a0时,0-a6,所以0-ab18,所以-18ab0,由知-18ab24.(2)因为-6a8,2b

8、0,求证:3a3+2b33a2b+2ab2.(请用分析法和综合法两种方法证明)证明:方法一:(综合法)3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a-b).因为ab0,所以a-b0,3a2-2b20,从而(3a2-2b2)(a-b)0,所以3a3+2b33a2b+2ab2.方法二:(分析法)要证3a3+2b33a2b+2ab2,只需证3a2(a-b)-2b2(a-b)0,只需证(3a2-2b2)(a-b)0,ab0,a-b0,3a2-2b22a2-2b20,(3a2-2b2)(a-b)0成立,原不等式得证.当堂检测课堂篇探究学习探究一探究二探

9、究三探究四思维辨析反思感悟反思感悟 分析综合法的解题思路分析综合法的解题思路分析综合法的解题思路是分析综合法的解题思路是:根据条件的构造特点去转化结论根据条件的构造特点去转化结论,得得到中间结论到中间结论Q;根据结论的构造特点去转化条件根据结论的构造特点去转化条件,得到中间结论得到中间结论P;假假设由设由P可推出可推出Q,即可得证即可得证.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析答案:ab且a0,b0 当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析不等式性质的实际应用不等式性质的实际应用例4 建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面

10、积的比值应不小于 ,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析延伸探究现有延伸探究现有A,B,C,D四个长方体容器四个长方体容器,A,B的底面积均为的底面积均为a2,C,D的底面积均为的底面积均为b2,A,C的高都是的高都是a,B,D的高都是的高都是b,且且ab.现在规定一现在规定一种游戏规那么种游戏规那么:每人一次从四种容器中取两个每人一次从四种容器中取两个,盛水总和多者为胜盛水总和多者为胜.请研究对于先

11、取者是否有必胜的方案请研究对于先取者是否有必胜的方案?如果有如果有,有几种有几种?分析分析:通过建立起问题的数学模型通过建立起问题的数学模型,可以发现其实质就是比较其可以发现其实质就是比较其中两个容器的容积之和与另外两个容器的容积之和的大小关系中两个容器的容积之和与另外两个容器的容积之和的大小关系.为为此此,需先计算出需先计算出A,B,C,D四个容器的容积四个容器的容积,再运用作差比较法进展比再运用作差比较法进展比较大小较大小.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析解:设A,B,C,D四个容器的容积依次为VA,VB,VC,VD.由题意,有VA=a3,VB=a2b,VC=ab2,

12、VD=b3.将A,B,C,D两两一组进展比较有以下三种可能:(VA+VB)-(VC+VD)=a3+a2b-ab2-b3=(a-b)(a+b)2,(VA+VC)-(VB+VD)=a3+ab2-a2b-b3=(a-b)(a2+b2),(VA+VD)-(VB+VC)=a3+b3-a2b-b2a=(a+b)(a-b)2.由题设知,a0,b0,ab,因此只有(VA+VD)-(VB+VC)=(a+b)(a-b)2能判断其大于0,而其他两组结果的正负依赖于a,b的取值.ab时为正,a0,试比较a与 的大小.(2)xR,mR,比较x2+x+1与-2m2+2mx的大小.分析:(1)此题需要分类讨论.(2)分别把

13、“x2+x+1与“-2m2+2mx视为整体,利用作差比较法进展比较.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析方法点睛方法点睛 作差法和作商法是比较实数大小和证明不等式的重要作差法和作商法是比较实数大小和证明不等式的重要方法方法,但是它们又有各自的适用范围但是它们又有各自的适用范围,对于不同的问题应中选择不对于不同的问题应中选择不同的方法进展解决同的方法进展解决.(1)一般实数大小的比较都可以采用作差法一般实数大小的比较都可以采用作差法,但是我们要考虑作但是我们要考虑作差后与差后与0的比较的比较,通常要进展因式分解通常要进展因式

14、分解,配方或者其他变形操作配方或者其他变形操作,所以所以,作差后必须容易变形到能看出与作差后必须容易变形到能看出与0的大小关系的式子的大小关系的式子.(2)作商法主要适用于那些能够判断出恒为正数的数或者式子作商法主要适用于那些能够判断出恒为正数的数或者式子,具有一定的局限性具有一定的局限性,作商后要与作商后要与1进展比较进展比较,所以所以,作商后必须易于变作商后必须易于变成能与成能与1比较大小的式子比较大小的式子,此种方法主要适用于那些含有幂指数的此种方法主要适用于那些含有幂指数的数或式子的大小的比较数或式子的大小的比较.当堂检测课堂篇探究学习探究一探究二探究三探究四思维辨析当堂检测1.a0,

15、-1babab2B.ab2abaC.abaab2D.abab2a解析解析:此题可以根据不等式的性质来解此题可以根据不等式的性质来解,由于由于-1b0,所以所以0b21.所所以以aab20,易得答案易得答案D.此题也可以根据此题也可以根据a,b的取值范围取的取值范围取特殊值特殊值,比方令比方令a=-1,b=- ,也容易得到正确答案也容易得到正确答案.答案答案:D2.设设a,b,cR,且且ab,那么那么()解析:选项A中c有可能为负值或零,故错误;选项B中当a0,b0时错误;选项C中当ba0时,不成立.答案:D课堂篇探究学习探究一探究二探究三探究四思维辨析当堂检测3.a0,-1babab2B.ab2abaC.abaab2D.abab2a解析解析:此题可以根据不等式的性质来解此题可以根据不等式的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论