




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数与导数中任意性和存在性问题探究命题人:闫霄 审题人:冯昀山 一、相关结论:结论1:;结论2:;结论3:;结论4:;结论5:;【如图一】结论6:;【如图二】结论7:;【如图三】结论8:;【如图四】结论9:的值域和的值域交集不为空;结论10:的值域是的值域的子集【例题1】:已知两个函数;(1) 若对,都有成立,求实数的取值范围;(2) 若,使得成立,求实数的取值范围;(3) 若对,都有成立,求实数的取值范围;解:(1)设,(1)中的问题可转化为:时,恒成立,即。;当变化时,的变化情况列表如下:-3(-3,-1)-1(-1,2)2(2,3)3(x)+00+h(x)k-45增函数极大值减函数极小值
2、增函数k-9因为,所以,由上表可知,故k-450,得k45,即k45,+).小结:对于闭区间I,不等式f(x)<k对xI时恒成立f(x)max<k, xI;不等式f(x)>k对xI时恒成立f(x)min>k, xI. 此题常见的错误解法:由f(x)maxg(x)min解出k的取值范围.这种解法的错误在于条件“f(x)maxg(x)min”只是原题的充分不必要条件,不是充要条件,即不等价.(2)根据题意可知,(2)中的问题等价于h(x)= g(x)f(x) 0在x-3,3时有解,故h(x)max0.由(1)可知h(x)max= k+7,因此k+70,即k-7,+).(3)
3、根据题意可知,(3)中的问题等价于f(x)maxg(x)min,x-3,3.由二次函数的图像和性质可得, x-3,3时, f(x)max=120k.仿照(1),利用导数的方法可求得x-3,3时, g(x)min=21.由120k21得k141,即k141,+).说明:这里的x1,x2是两个互不影响的独立变量.从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“x”恒成立,还是“x”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜.【例题2】:(2010年山东理科22) 已知函数;(1) 当时,讨论的单调
4、性;(2)设,当时,若对,,使,求实数的取值范围;解:(1)(解答过程略去,只给出结论)当a0时,函数f(x)在(0,1)上单调递减,在(1,+)上单调递增;当a=时,函数f(x)在(0,+)上单调递减;当0<a<时,函数递增区间为,递减区间为(0,1),;(2)函数的定义域为(0,+),(x)=a+=,a=时,由(x)=0可得x1=1,x2=3.因为a=(0,),x2=3(0,2),结合(1)可知函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,所以f(x) 在(0,2)上的最小值为f(1)= .由于“对x1(0,2),x21,2,使f(x1) g(x2)”等价于“g(
5、x)在1,2上的最小值不大于f(x) 在(0,2)上的最小值f(1)= ”. ()又g(x)=(xb)2+4b2, x1,2,所以 当b<1时,因为g(x)min=g(1)=52b>0,此时与()矛盾; 当b1,2时, 因为g(x)min=4b20,同样与()矛盾; 当b(2,+)时,因为g(x)min=g(2)=84b.解不等式84b,可得b.综上,b的取值范围是,+).二、相关类型题:类型一:直接求最值(往往需带参讨论)例3:类题:例4:类题:类型二:分离常数法求最值例5:类题:例6: 类题:类型三:先进行变形简化,再求最值例7:类题:类型四:分离常数法+罗比达法则洛必达法则简
6、介:法则1 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)0; (3),那么 =。 法则2 若函数f(x) 和g(x)满足下列条件:(1) 及; (2),f(x) 和g(x)在与上可导,且g'(x)0; (3),那么 =。 法则3 若函数f(x) 和g(x)满足下列条件:(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)0; (3),那么 =。利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 将上面公式中的xa,x换成x+,x-,洛必达法则也成立。洛必达
7、法则可处理,型。在着手求极限以前,首先要检查是否满足,型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。例8:(2010年全国新课标理)设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围原解:(1)时,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取值范围为原解在处理第(II)时较难想到,现利用洛必达法则处理如下:另解:(II)当时,对任意实数a,均在;当时,等价于令(x>0),则,令,则,知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。由洛必达法则知,00,故综上,知a的取值范围为。类题1:例4及其类题,例7及其类题,以下示范例7解法解法二:原解在处理第(II)时非常难想到,现利用洛必达法则处理如下:(II)由题设可得,当时,k<恒成立。令g (x)= (),则,再令(),则,易知在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【8英YL期中】蚌埠市怀远县等3地2024-2025学年八年级下学期期中考试英语试题
- 《数据科学基础》课件
- 中国新质生产力驱动
- 2025年山南a2货运从业资格证考试
- 武汉民政职业学院《二次接线》2023-2024学年第二学期期末试卷
- 昆明铁道职业技术学院《纳税筹划与实务》2023-2024学年第二学期期末试卷
- 新疆应用职业技术学院《临床微生物学检验技术》2023-2024学年第二学期期末试卷
- 江西省赣州寻乌县第二中学2025年高三3月初态测试历史试题试卷含解析
- 邵阳职业技术学院《印度社会专题》2023-2024学年第二学期期末试卷
- 碾子山区2025届数学五下期末复习检测试题含答案
- 儿童抑郁量表CDI
- 马克思主义新闻观十二讲之第八讲坚持新闻真实原则课件
- 工艺管道伴热管施工技术方案
- 各层次养老机构定价方法及案例
- 二方审核计划
- 优秀病例演讲比赛PPT
- 吉林省矿产资源概况及分布
- 最新肺结核诊断和治疗指南
- 公司员工基本礼仪培训ppt完整版课件
- 工程项目综合应急预案(通用版)
- 半桥LLC谐振变换器设计与仿真
评论
0/150
提交评论