下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初三数学平面直角坐标系教案【】初三数学平面直角坐标系教案让学生掌握象限或坐标轴上的点的坐标的特点 ,会求点关于坐标轴或原点的对称点的坐标.1、教材分析:知识结构:日常生活及其它学科需要一种确定平面内点的位置的方法.在数学上 ,可以类比数轴 ,引出平面直角坐标系的概念.完成了坐标平面内的点与有序实数对的一一对应 ,也把数与形统一了起来.重点、难点分析:本节的重点是能正确画出直角坐标系 ,并能在直角坐标系中 ,根据坐标找出点 ,由点求出坐标.直角坐标系的根本知识是学习全章的根底 ,在后面学习函数的图象以及一些具体函数的图象时都要应用这些知识.通过对这局部知识的反复而深入的练习、应用 ,渗透坐标的思
2、想 ,进而形成数形结合的的数学思想.本节的难点是平面直角坐标系中的点与有序实数对间的一一对应.限于初中的学习范围与学生的接受能力 ,学生理解起来有一定的困难 ,如:不理解有序实数对 ,或不能很好地理解一一对应 ,有的只限于机械地记忆 ,这样会影响对数形结合思想的形成.教材上只给出了比拟简单的描述.教师可以通过课堂练习 ,让学生从一点一滴处理解横、纵坐标的值不同 ,即实数对不同 ,那么在直角平面上的点的位置也不同 ,反之 ,亦然.2、教学建议:数学是世界的一局部 ,同时又隐藏在世界中.这样 ,数学教学的目的之一就是使学生通过数学的学习 ,认识数学与现实世界的联系 ,数学与人类生活的密切联系 ,以
3、及数学对人类历史开展的影响与作用.因此 ,数学概念的产生有其必然性与合理性.(1)概念的引入组织学生看本章引言中的气温图 ,说明确定平面内点的位置是实际需要的.可以让学生进行讨论 ,他们的生活中还有什么类似的例子.如电影院中的座位 ,到图书馆找书 ,学生的课程表等.从丰富的背景材料中 ,体会数学的广泛应用性.(2)讲授概念:现实生活和其它学科向数学提出了问题 ,如何建立数学模型以解决这个问题呢?以前 ,我们学习过数轴.数轴上每一个点都对应一个实数 ,这个实数叫做这个点在数轴上的坐标 ,数轴上的点与实数是一一对应的.这样利用数轴可以研究一些数量关系的问题.确定平面内点的位置的方法也可以与此类似
4、,类比出平面直角坐标系的概念 ,并结合图形讲述平面直角坐标系的有关概念.(3)练习 ,深入地理解概念:平面直角这节课的概念较多 ,又都是新的 ,开始的时候不适合太快 ,给学生一个适应的过程 ,一个思维的空间.如:x轴、y轴不在任何象限内 ,原点是x轴、y轴的交点等.然后 ,就可以多练习一些简单题 ,如给出坐标 ,在平面直角坐标系中标点 ,或反之 ,给出平面直角坐标系中点的位置 ,找出其坐标.通过小题的练习 ,使学生能逐步理解坐标平面内的点和有序实数对之间的一一对应关系.总之 ,形成初步的数学概念后 ,学生可以通过变式 ,逐步加深对概念的理解.在解题过程中 ,教师的任务是创设环境 ,鼓励学生凭借
5、自己的原有认知水平 ,完成对数学知识的建构.在相互讨论评价的过程中 ,培养学生的责任心.这节课可以分两课时完成 ,第一节课由实际引入 ,类比数轴定义 ,给出平面直角坐标系的概念 ,并通过练习到达熟练的程度.第二节课 ,可视第一节课的掌握情况 ,适当增加一些有探索性的题目.如求一点关于x轴、y轴、原点的对称点的坐标;一三象限角平分线上的点的坐标特点等.教学目标:1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.2、会用象限和坐标轴说明直角坐标系内点的位置 ,并会根据点的位置 ,确定点的横坐标、纵坐标的符号.3、掌握确定点关于坐标轴(或原点)的对称点
6、的方法.培养学生观察 ,归纳总结的能力.4、培养学生发现问题 ,主动探索的能力.在与同伴的合作交流中 ,培养学生的责任心.5、渗透数形结合的思想 ,培养学生思维的严谨性和深刻性.教学重点:1、掌握象限或坐标轴上的点的坐标的特点.2、会求点关于坐标轴或原点的对称点的坐标.教学难点:理解平面内的点与有序实数对之间的一一对应关系.单靠“死记还不行,还得“活用,姑且称之为“先死后活吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即稳固了所学的材料,又锻炼了学生的写作能力
7、,同时还培养了学生的观察能力、思维能力等等,到达“一石多鸟的效果。教学用具:直尺、计算机与当今“教师一称最接近的“老师概念 ,最早也要追溯至宋元时期。金代元好问?示侄孙伯安?诗云:“伯安入小学 ,颖悟非凡貌 ,属句有夙性 ,说字惊老师。于是看 ,宋元时期小学教师被称为“老师有案可稽。清代称主考官也为“老师 ,而一般学堂里的先生那么称为“教师或“教习。可见 ,“教师一说是比拟晚的事了。如今体会 ,“教师的含义比之“老师一说 ,具有资历和学识程度上较低一些的差异。辛亥革命后 ,教师与其他官员一样依法令任命 ,故又称“教师为“教员。教学方法:合作学习 ,讨论 ,探究家庭是幼儿语言活动的重要环境 ,为了与家长配合做好幼儿阅读训练工作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《发育性髋关节脱位闭合复位后髋臼发育变化的临床研究》
- 2024年版环境监测钻探合同3篇
- (新教材同步备课)2024春高中生物 第3章 基因工程 3.2.1 基因工程的基本操作程序教学实录 新人教版选择性必修3
- 2024年电子产品零售连锁加盟合同3篇
- 2024年校园内停车场承包与维护一体化服务合同3篇
- 范文春节日记模板集锦5篇
- 综合安全合同协议
- 门窗分包合同格式
- 投资引进服务协议
- 财务顾问聘请协议书
- 财产损害赔偿起诉状范本
- 创业管理(上海财经大学)智慧树知到期末考试答案2024年
- 【安徽山鹰纸业股份有限公司盈利能力探析(任务书+开题报告)3000字】
- 人教版九年级化学上册期末试卷及答案免费
- 约谈记录表完
- 2024届重庆市西南大学附属中学高考生物试题模拟题及解析附答案
- 油气管道技术现状与发展趋势
- 第七、八章原核生物、真核生物基因的表达调控
- 细胞自噬与疾病关系
- 中药饮片项目融资计划书
- 基于STM32的智能温控风扇设计
评论
0/150
提交评论