


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 教学内容13.4课题学习 最短路径问题2-造桥选址问题教学目标知识与技能:能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.过程与方法:在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感、态度与价值观:通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.教学重点利用轴对称、平移将最短路径问题转化为“两点之间,线段最短”问题教学难点如何利用轴对称、平移将最短路径问题转化为线段和最小问题.教学准备课时安排1课时第一课时课时目标解决造桥选址问题教学过程创设情景,
2、引入课题 前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“造桥选址问题”. 问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?追问1你能利用轴对称的有关知识,找到上问中符合条件的点B' 吗? 追问2 如上图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的差最小? 如图2:小河边有两个村庄A,
3、B,要在河边建一自来水厂向A村与B村供水(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径. 基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”. 探究1造桥选址问题 如图,从A地到B地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,
4、应如何选择桥的位置才能使从A地到B地的路程最短?思路导引:从A到B要走的路线是AMNB,如图所示,而MN是定值,于是要使路程最短,只要AMBN最短即可此时两线段应在同一平行方向上,平移MN到AC,从C到B应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置 探究2无为三中八(1)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明
5、先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?探究3 如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大 分析:此题的突破点是作点A(或B)关于直线l的对称点A(或B),作直线AB(AB)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A,AB的连线交l于点C,则点C即为所求理由:在直线l上任找一点C(异于点C),连接CA,CA,CA,CB.因为点A,A关于直线l对称,所以l为线段AA的垂直平分线,则有CACA,所以CACBCACBAB.又因为点C在l上,所以CACA.在ABC中,CACBCACBAB,所以CACBCACB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法 反思小结(1)本节课研究问题的基本过程是什么? (2)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?你还有哪些收获? 安全提示放学了,请同学们注意交通安全练习设计如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度围墙施工环保监测与评估合同
- 2025年度绿色物流委托配送服务协议书
- 2025年事业单位员工续签合同管理范本
- 2025年中外合资合同编制手册
- 2025年标准设计与施工一体化合同
- 2025年企业级软件定制开发外包合同
- 2025年网络托管数据中心合同模板
- 2025年全球金融交易合规合同
- 2025年供应商服务合同协议
- 2025年单位无息借款合同样本
- Unit 4 Time to celebrate 教学设计-2024-2025学年外研版英语七年级上册
- 健康档案模板
- 筋膜刀的临床应用
- DB32-T 4790-2024建筑施工特种作业人员安全操作技能考核标准
- 2022年安徽阜阳太和县人民医院本科及以上学历招聘笔试历年典型考题及考点剖析附带答案详解
- 2024-2030年中国反刍动物饲料行业市场发展趋势与前景展望战略分析报告
- 护理团体标准解读-成人氧气吸入疗法护理
- 幼儿园大班《识字卡》课件
- 2024-2030全球与中国宠物医院市场现状及未来发展趋势
- 《研学旅行课程设计》课件-2认识研学旅行的参与方
- 安全警示教育的会议记录内容
评论
0/150
提交评论