




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(下一次课)定义及一般形式: 只含有一个未知数只含有一个未知数,未知数的最高次数是未知数的最高次数是_的的_式方程式方程,叫做一元二次方程。叫做一元二次方程。 一般形式一般形式:_二次整ax2+bx+c=o (ao)练习一1、判断下面哪些方程是一元二次方程222221x2y24(1)x -3x+4=x -7 ( ) (2) 2X = -4 ( )(3)3 X+5X-1=0 ( ) (4) 3x -20 ( )(5)13 ( )(6)0 ( )xy 练习二2、把方程(1-x)(2-x)=3-x2 化为一般形式是:_, 其二次项系数是_,一次项系数是_,常数项是_.3、方程(m-2)x|m| +3
2、mx-4=0是关于x x的一元二次方程,则 ( )A.m=2 B.m=2 C.m=-2 D.m 2 2x x2-3x x-1=02-3-1C C解一元二次方程的方法有几种? 例例:解下列方程解下列方程 、用直接开平方法、用直接开平方法:(x+2)2= 2、用配方法解方程、用配方法解方程4x2-8x-5=0解:两边开平方,得: x+2= 3 x=-23 x1=1, x2=-5右边开平方后,根号前取“”。两边加上相等项“1”。 解解:移项移项,得得: 3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1= x2 = 解解:原方程化为原方程化为 (
3、y+2) 2 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或或 y-1=0 y1=-2 y2=141002 563x=先变为一般形式,代入时注意符号。83-把y+2看作一个未知数,变成(ax+b)(cx+d)=0形式。3、用公式法解方程 3x2=4x+74、用分解因式法解方程:(y+2)2=3(y+2)4 同除二次项系数化为同除二次项系数化为1;移常数项到右边;移常数项到右边;两边加上一次项系数一半的平方;两边加上一次项系数一半的平方;化直接开平方形式化直接开平方形式;解方程。解方程。步骤归纳 先化为一般形式;先化为一般形式;再确定再确定a、b、c,求
4、求b2-4ac; 当当 b2-4ac 0时时,代入公式代入公式:242bbacxa-=步骤归纳若b2-4ac0,方程没有实数根。右边化为右边化为0,左边化成两个因式左边化成两个因式的积;的积;分别令两个因式为分别令两个因式为0,求解。,求解。步骤归纳选用适当方法解下列一元二次方程选用适当方法解下列一元二次方程 1 1、 (2x+1)(2x+1)2 2=64 =64 ( ( 法法) 2 2、 (x-2)(x-2)2 2- -(x+(x+) )2 2=0 =0 ( ( 法法) 3 3、( (x-x-) )2 2 -(4-(4-x)=x)= ( ( 法法) 4 4、 x x- -x-10=x-10=
5、 ( ( 法法) 5 5、 x x- -x-x-= = ( ( 法法) 6 6、 x xx-1=0 x-1=0 ( ( 法法) 7 7、 x x -x-x-= = ( ( 法法) 8 8、 y y2 2- y-1=0- y-1=0 ( ( 法法) 2小结:选择方法的顺序是: 直接开平方法 分解因式法 配方法 公式法分解因式分解因式 配方公式配方分解因式公式直接开平方练习三一元二次方程一元二次方程的定义一元二次方程的解法一元二次方程的应用把握住:一个未知数,最高次数是2, 整式方程一般形式:ax+bx+c=0(a0)直接开平方法: 适应于形如(x-k) =h(h0)型 配方法: 适应于任何一个一元二次方程公式法: 适应于任何一个一元二次方程因式分解法: 适应于左边能分解为两个一次式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中英语大概念教学在提升学生阅读理解能力中的应用论文
- 中国医药商业行业市场发展趋势预测报告-智研咨询重磅发布
- 节日费发放管理制度
- 英俊镇应急管理制度
- 茶酒行员工管理制度
- 评估绿色建筑的指标系统
- 财务管理应用手册
- 论述类文本之主观题答题技巧
- 设备维修工个人工作总结不足
- 江苏省扬州市七校联考2024-2025学年高二下学期5月月考地理试题(含答案)
- 高新产业园区的品牌营销战略
- 数据仓库安全防护策略-全面剖析
- 江苏省泰州市实验小学2025年五下数学期末监测试题含答案
- 2025年北京中考英语阅读考纲外高频词汇(复习必背)
- 通信高空作业安全培训
- 食品行业食品安全快速检测方案
- 2025年中考第一次模拟考试地理(青海卷)(全解全析)
- 2025年上海青浦新城发展集团有限公司招聘笔试参考题库含答案解析
- 显微根尖手术治疗
- 电网工程设备材料信息参考价(2024年第四季度)
- 《水性涂料产品介绍》课件
评论
0/150
提交评论