自动控制原理答案孟庆明_第1页
自动控制原理答案孟庆明_第2页
自动控制原理答案孟庆明_第3页
自动控制原理答案孟庆明_第4页
自动控制原理答案孟庆明_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、爱校园() 课后答案网() 淘答案()旨在为广大学生朋友的自主学习提供一个分享和交流的平台。Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点,最全最多的课后习题参考答案,尽在课后答案网()!大学答案 - 中学答案 - 考研答案 - 考试答案课后答案网,用心为你服务!电位器放大器电动机减速器阀门水箱浮子 杠杆_电位器放大器电动机绞盘位置大门_11-5 解:系统的输出量:电炉炉温 给定输入量:加热器电压 被控对象:电炉仓库大门自动控制开(闭)的职能方框图门实际开(闭)门 的位置工作原理:系统的被控对象为大门。被控量为大门的实际位置。输入量为希望的大门位置。当合上开门开关时,

2、桥式电位器测量电路产生偏差电压,经放大器放大后,驱动电动机带动绞盘转动, 使大门向上提起。同时,与大门连在一起的电位器电刷上移,直到桥式电位器达到平衡,电动机停转,开 门开关自动断开。反之,当合上关门开关时,电动机带动绞盘反转,使大门关闭。受控量:门的位置测量比较元件:电位计1-4 解:受控对象:门。 执行元件:电动机,绞盘。 放大元件:放大器。水位自动控制系统的职能方框图h chr出水 电动机通过减速器使阀门的开度减小(或增大),以使水箱水位达到希望值 hr 。当 hc = hr 时,电位器电刷位于中点位置,电动机不工作。一但 hc hr 时,浮子位置相应升高(或降低),通过杠杆作用使电位器

3、电刷从中点位置下移(或上移),从而给电动机提供一定的工作电压,驱动电压 ur 相对应,此时电位器电刷位于中点位置)。rc(与电位器设定工作原理:系统的被控对象为水箱。被控量为水箱的实际水位 h 。给定值为希望水位 h测量元件:浮子,杠杆。放大元件:放大器。执行元件:通过电机控制进水阀门开度,控制进水流量。比较计算元件:电位器。c被控量:水箱的实际水位 h受控对象:水箱液面。1-1(略)1-2(略)1-3 解:习题第一章自动控制原理(非自动化类)习题答案电位器电压 放 大功 率 放 大电机 加热器电炉热 电偶K1K21s 2 + s1TsK3K21Ts1s2 + sK1K3-21 3Ts3 +

4、(T + 1)s2 + s + K K,C (s) / R(s) =K1K3X5(s)X4(s)X3(s)X2(s)R(s)C(s)_N1(s)+X1(s)N2(s)将方块图连接起来,得出系统的动态结构图:X5(s)-X4(s)C(s)X5(s)X4(s)X3(s)N2(s)X5(s)C(s)-X2(s)X1(s)X3(s)X2(s)X1(s)+R(s) 3 5绘制上式各子方程的方块图如下图所示:N1(s)K X (s) = s2C (s) + sC (s) X 5 (s) = X 4 (s) K2 N2 (s)TsX 4 (s) = X 3 (s) X 2 (s) = K1 X1 (s) X

5、 3 (s) = X 2 (s) X 5 (s)2-1 解:对微分方程做拉氏变换: X1 (s) = R(s) C (s) + N1 (s)习题第二章炉温给定 炉温放大元件:电压放大器,功率放大器,减速器比较元件:电位计 测量元件:热电偶 职能方框图:1s + 1Ks1Ts + 1sTTs+1s1s + 11Ts + 1K-31 31 42 32 4(b)R(s)1 + G G G G + G G G G(a)=R(s)ms2 + fs + KG1 + G2C (s) =1C(s)2-3 解:(过程略)0N (s) =C (s)(s + 1)(Ts + 1)1 +Ts2 + (T + 1)s

6、+ (K + 1)kR(s)C (s)= (s + 1)(Ts + 1)(s + 1)(Ts + 1) =K + ô s+Kô sX4(s)X3(s)X1(s)R(s) C(s)X5(s)X2(s)N(s)将方块图连接得出系统的动态结构图:C(s)X4(s)X4(s)X3(s)X5(s)N(s)N(s)X5(s)C(s)-X3(s)X1(s)X2(s)R(s)X1(s)R(s)X2(s) X 5 (s) = (Ts + 1) N (s)绘制上式各子方程的方块如下图:C (s) = X (s) N (s)4(Ts + 1) X 4 (s) = X 3 (s) + X 5 (s

7、) X 2 (s) = ô sR(s)(s + 1) X 3 (s) = X1 (s) + X 2 (s)2-2 解:对微分方程做拉氏变换 X1 (s) = KR(s) C (s)1 3Ts3 + (T + 1)s2 + s + K K2C (s) / N (s) = K2 K3TsC (s) / N1 (s) = C (s) / R(s) ,三个回路均接触,可得 Ä = 1 La = 1 + G1G2 + 2G14 La = L1 + L2 + L3 = G1G2 G1 G1a =13(b)(1)系统的反馈回路有三个,所以有R1 + G1G2G5 + G2G3G4 G4G

8、2G5G1G2G3 + 1C =三个回路两两接触,可得 Ä = 1 La = 1 + G1G2G5 + G2G3G4 G4G2G5(2)有两条前向通道,且与两条回路均有接触,所以P1 = G1G2G3 , Ä1 = 1P2 = 1, Ä2 = 1(3)闭环传递函数 C/R 为 La = L1 + L2 + L3 = G1G2G5 G2G3G4 + G4G2G5a =132-5 解:(a)(1)系统的反馈回路有三个,所以有K1K2nG (s) =Kn s1 2 3Ts2 + s + K K K(2)要消除干扰对系统的影响C (s) / N (s) = K n K3

9、s K1K2 K3Gn = 0Ts + 1s11 2 3K231 +sTs2 + s + K K KKKnn 1C (s) / N (s) = (K G KK3K2 ) Ts + 1 = K n K3 s K1K2 K3Gn求 C/N,令 R=0,向后移动单位反馈的比较点1 2 31 + G(s)Ts2 + s + K K K=C (s) / R(s) =G(s)K1K2 K3s(Ts + 1)2-4 解 :(1)求 C/R,令 N=0G(s) = K1K2 K3R(s)1 + G1G2 + G2G3 + G3G4 + G1G2G3G4(e)G1G2G3G4C (s) =R(s)1 G2G3R

10、(s)1 + G1 + G2G1(d)(c)C(s) = G1 G2C(s) = G2 + G1G25nù1 î 2= 0.1t p =ð13-2 解:系统为欠阻尼二阶系统(书上改为“单位负反馈”,“已知系统开环传递函数”)ó % = eðî / 1î ×100% = 1.3 1 ×100%2H1 + 10K= 10HK= 0.9H 1 + 10K0= 10 K= 1010K0要使过渡时间减小到原来的 0.1 倍,要保证总的放大系数不变,则:(原放大系数为 10,时间常数为 0.2)1 + 10KHHs

11、+ 10.2R(s)0 1 + G(s)K=1 + 10K HG(s)ö (s) = C (s) = K10K0采用 K0 , K H 负反馈方法的闭环传递函数为0.2s + 1)3-1 解:(原书改为 G(s) =10习题第三章N3 (s)N3 (s)N2 (s)N2 (s)1 + G1G2G3 + G2= 1=E(s) = C (s)(1 + G2 )G3E (s) = C (s)N1 (s)N1 (s)1 + G1G2G3 + G2R(s)1 + G1G2G3 + G2E(s) = C (s) = G2G3 G1G2G3E(s) = 1 + G2 G2G3N3 (s)1 + G

12、1G2G3 + G2N2 (s)1 + G1G2G3 + G2=C (s)C (s) = 1× (1 + G1G2G3 + G2 ) = 1(1 + G2 )G3N1 (s)R(s)1 + G1G2G3 + G2= C (s) / R(s)C (s)C (s) = G1G2G3 + G2G32-6 解:用梅逊公式求,有两个回路,且接触,可得 Ä = 1 La = 1 + G1G2G3 + G2 ,可得1 + G1G2 + 2G11 + G1G2 + 2G1RG1G2 + G2C = G1G2 + G1 + G2 G1 =(2)有四条前向通道,且与三条回路均有接触,所以P1

13、= G1G2 , Ä1 = 1P2 = G1 , Ä2 = 1P3 = G2 , Ä3 = 1P4 = G1 , Ä4 = 1(3)闭环传递函数 C/R 为6nc. î = 0.1,ù = 1s1 时,nîùs= 3.5st =3.52ó % = eðî / 1î ×100% = 72.8%nb. î = 0.1,ù = 10s1 时,nîùs= 7st =3.52ó % = eðî / 1

14、38; ×100% = 72.8%na. î = 0.1,ù = 5s1 时,n2îùn = 10解得:ùn = 14.14, î = 0.354, ó %=30%, t p = 0.238结论,K 增大,超调增加,峰值时间减小。3-4 解:(1)ù 2 = 200s2 + 10sG(s) =200(2) K = 20s1 时:n2îùn = 10解得:ùn = 10, î = 0.5, ó % = 16.3%, t p = 0.363ù 2 =

15、 100s2 + 10sG(s) =1003-3 解:(1) K = 10s1 时:s(s + 24.1)s(0.041s + 1)=G(s) =47.11136所以,开环传递函数为:ùn = 33.71î = 0.358解得:7系统不稳定。(b)用古尔维茨判据5210203104.73.25532s4 s3 s2 s1s0系统稳定。(2)(a)用劳思判据= 8000D3 =001001009202010= 80D1 = 20, D2 =1009201系统稳定。(b)用古尔维茨判据910001204100s3 s2 s1s0则ó % 减小, ts 减小3-5 解:

16、(1)(a)用劳思判据(3) 讨论系统参数:î 不变,ó % 不变;î 不变,ùn 增加,则 ts 减小;ùn 不变,î 增加,nîùs= 1.4st =3.52ó % = eðî / 1î ×100% = 16.3%n(2)î = 0.5,ù = 5s1 时,nîùs= 35st =3.52ó % = eðî / 1î ×100% = 72.8%8劳斯表:s3 + 21s2

17、+ 10s + 10(a) 系统传递函数:10(s + 1)3-7 解:3解得 K >44若系统稳定,则:K 1 > 0, K > 03K40.20.83 K 1K 1Ks3s2s1s0劳思表0.2S 3 + 0.8S 2 + (K 1)s + K = 04(2)系统闭环特征方程为若系统稳定,则: K 1 > 0, K > 0 。无解4K0.210.8K K 1s3s2s1s0系统不稳定。3-6 解:(1)系统闭环特征方程为0.2S 3 + 0.8S 2 s + K = 0劳思表2= 3060D4 =0300002151510310(其实 D4 不必计算,因为 D

18、3 < 0 )13302 = 153= 47, D =53D1 = 10, D2 =11001510109610100.610.051s3s2s1s0劳思表:0.05s3 + 0.6s2 + s + 10 = 0解法二、系统的闭环特征方程为:Kssss当 r (t ) = t ×1(t) 时, e = 0.1 ;当 r (t ) = t 2 ×1(t ) 时, e = 。1稳定域为:î > 0, 0 < K < 200î3-9 解:(1)解法一、因为õ = 1 ,属于型无差系统,开环增益 K = 10 ,故当 r (t)

19、 = 1(t ) 时, ess = 0 ;2î> 0, K > 0 时系统稳定当 2î > 0,2î 0.01Ks02îK1K0.012î2î 0.01Ks3s2s1劳思表:0.01s3 + 2î s2 + s + K = 0系统稳定。3-8 解:系统闭环特征方程为:100110110s2s1s0劳思表:s2 + 101s + 10(b) 系统传递函数:10系统稳定。101000121200 / 2110s3 s2 s1s0101 +s(s + 4)(s2 + 2s + 2)s 0s 0s2s2 7(s +

20、 1)sss= 8 / 711输入 r (t ) = t ×1(t) 时, R(s) = 1 , e = lim sE = lim ss(s + 4)(s2 + 2s + 2)s 0s 0ss1 + 7(s + 1)sss1 = 01当输入 r (t) = 1(t ) 时, R(s) = 1 , e = lim sE = lim s1 + G(s)sE i RR(s)(s)R(s) =E = ö1系统稳定。1071507167.59.47s4 s3 s2 s1s0劳思表:s4 + 6s3 + 10s2 + 15s + 7 = 0解法二、系统的闭环特征方程为:K7ssss=

21、。1当 r (t ) = t ×1(t) 时, e = 8 = 1.14 ;当 r (t ) = t 2 ×1(t ) 时, e8ss(2)解法一、因为õ = 1 ,属于型无差系统,开环增益 K = 7 ,故当 r (t ) = 1(t ) 时, e = 0 ;s(0.1s + 1)(0.5s + 1)1 +s0s 0s3s3 10sss= 11输入 r (t ) = t 2 ×1(t ) 时, R(s) = 2 , e = lim sE = lim ss(0.1s + 1)(0.5s + 1)1 +s 0s 0s2 10s2sss= 0.111输入 r

22、 (t ) = t ×1(t) 时, R(s) = 1 , e = lim sE = lim ss(0.1s + 1)(0.5s + 1)s 0sss 0 101 +sss1 = 01当输入 r (t) = 1(t ) 时, R(s) = 1 , e = lim sE = lim s1 + G(s)sE i RR(s)(s)R(s) =E = ö1系统稳定。11s2输入 r (t ) = 10t, R(s) =10调节时间 ts = 4T = 1min, T = 0.25 minTs + 1R(s)为一阶惯性环节3-10 解:系统传递函数为= G(s) =1C (s)1 +

23、s2 (0.1s + 1)s 0s0s3s3 8(0.5s + 1)sss= 0.2521输入 r (t ) = t 2 ×1(t ) 时, R(s) = 2 , e = lim sE = lim s1 +s2 (0.1s + 1)s 0s 0s2 8(0.5s + 1)s2sss= 011输入 r (t ) = t ×1(t) 时, R(s) = 1 , e = lim sE = lim ss2 (0.1s + 1)s 0s0ss1 + 8(0.5s + 1)sss1 = 01当输入 r (t) = 1(t ) 时, R(s) = 1 , e = lim sE = lim

24、 s1 + G(s)sE i RR(s)(s)R(s) =E = ö1系统稳定。0.14183.28s3 s2 s1s0劳思表:0.1s3 + s2 + 4s + 8 = 0解法二、系统的闭环特征方程为:K当 r (t ) = t ×1(t) 时, ess = 0 ;当 r (t ) = t ×1(t) 时, ess = 0.25 。22(3)解法一、因为õ = 2 ,属于型无差系统,开环增益 K = 8 ,故当 r (t) = 1(t ) 时, ess = 0 ;1 +s(s + 4)(s2 + 2s + 2)s0s 0s3s3 7(s + 1)sss

25、= 11输入 r (t ) = t 2 ×1(t ) 时, R(s) = 2 , e = lim sE = lim s12在扰动点之后引入积分环节 1/s,s 0所以对输入响应的误差, ess = lim sE(s) = 0 。s(0.05s + 1)(s + 5) + 2.5Kss(0.05s + 1)(s + 5) + 2.5KE (s) = s(0.05s + 1)(s + 5) 2.5s(0.05s + 1) 1 = (0.05s + 1)(s + 5) 2.5(0.05s + 1)s(0.05s + 1)(s + 5)s(0.05s + 1)(s + 5) + 2.5KN

26、(s)1 + 2.5KE i N ö2.5(0.05s + 1)s= E (s) = s + 5 =2.5s(0.05s + 1)(s + 5)s(0.05s + 1)(s + 5) + 2.5KR(s)1 + 2.5KE i R =ös(0.05s + 1)(s + 5)1= E(s) =(3)在扰动点前的前向通道中引入积分环节 1/s,s 05 + 2.5Kss= 0.0455 。比较说明,K 越大,稳态误差越小。e = lim sE(s) =2.5(2)当 K=20 时s 0s0(0.05s + 1)(s + 5) + 2.5Ks5 + 2.5Kss= 0.0238e

27、2.5= lim sE(s) = lim s (0.05s + 1)(s + 5) 2.5(0.05s + 1) 1 =ss(1)当 K=40 时输入 R(s) =, N (s) =11(0.05s + 1)(s + 5) + 2.5KsE (s) = (0.05s + 1)(s + 5) 2.5(0.05s + 1) 1(0.05s + 1)(s + 5)1 +N (s)2.5KE i N ö= E (s) = s + 5 2.5(0.05s + 1)(s + 5)1 +R(s)2.5KE i R ö1= E(s) =s 03-11 解:用梅森公式:ess = lim s

28、E (s) = 2.5(C )D稳态误差:ss (0.25s + 1)2210E (s) = R(s) C (s) = 10 T1s + 21s(T2 +ô K )s + 5 + k C(s)ô s +113E i N s3ssnE i R s3ssre= = lim sös 0= , e= lim sös 011s3s3令 R(s) =, N (s) =11E i N s2ssnE i R s2ssr= = lim sös 0e= 2(K + 5) ,= lim sös0e11s2s2令 R(s) =, N (s) =11E i N

29、 sssnE i R sssre= lim sös 0= lim sös01 = 21 = 0 ,ses令 R(s) =, N (s) =1121ô s2 + Ks + 5s)Ts + 2(T s2 + K211 +N (s)s(T s + 2)(T s + Kô s + K + 5) + (ô s + 1)1E i N × (ô s + 1)=ö= E(s) =(ô s + 1)(T2 s + 2)s(T2 s + 5) + Ks(ô s + 1)(ô s + 1)21Ts + 2(

30、T s2 + Kô s2 + Ks + 5s)211 +s(T s + 2)(T s + Kô s + K + 5) + (ô s + 1)R(s)1× (ô s + 1)E i R =ös(T1s + 2)(T2 s + Kô s + K + 5)1= E (s) =系统开环õ = 1 ,故对 R 为型,干扰 N 作用点之前无积分环节,系统对 N 为 0 型解法二、用梅森公式R(s)N(s)3-12 解:解法一、原系统结构图变换为s 0所以对输入响应的误差, ess = lim sE(s) = 。K1s(0.05

31、s + 1)(s + 5) + 2.5K sE (s) = R(s)öE i R + N (s)öE i N =(0.05s + 1)(s2 + 5s 2.5) 1(0.05s + 1)(s + 5)sss(0.05s + 1)(s + 5) + 2.5KN (s)1 + 2.5KE i N ö2.5(0.05s + 1)= E(s) = s + 5 1 =2.5(0.05s + 1)(s + 5)ss(0.05s + 1)(s + 5) + 2.5KR(s)1 + 2.5KE i R =ös(0.05s + 1)(s + 5)1= E (s) =14n

32、n n 1 +s2 + 2îù ss 0s 0ùs2ù 2ssse = lim sE R(s) = lim s11 = 2îs2(2) 输入 r (t) = 1(t), R(s) =1n n 1 +s2 + 2îù ss0s0sù 2ssse = lim sE R(s) = lim s1 = 01s(1)输入 r (t) = 1(t), R(s) =1n1 + G(s)s2 + 2îù ssE i RR(s)(s)R(s) =G(s) = n ,误差传递函数 E = ö1ù

33、23-14 解:开环传递函数为s0根据定义 e = r c , ess = essr + essn = essn = lim sEn (s) = 0.1 。si0.5s2 + s + 200(b)系统开环õ = 1 ,为型系统,故 essr = 0 ;又 En (s) = N (s)iöC i N =2000.1信号 essn = 0 ,从而有 ess = essr + essn = 0 。r (t ) = t ×1(t) 时,essr = 0 ,又在 n(t)作用点以前原系统串联了一个积分环节,故对阶跃干扰R(s)s2 + s + 1,因为分子分母后两项系数对应

34、相等,故系统为无差,在解法二、=s 0ss + 1s2C (s)输入 R(s) =, N (s) =,所以 ess = lim sE(s) = 011E(s) = R(s) C(s) = R(s) (R(s)iöC i R + N (s)iöC i N )N (s)s(s + 1) + 1R(s)s(s + 1) + 1C i N C i R =,ö=(a) 解法一、解得,ös(s + 1)C (s)s + 1C (s)系统对 r(t)为型,对 n(t)为 0 型。3-13:154-2 解:4-1 解:习题第四章16作图测得 î = 0.5 的

35、阻尼线与根轨迹交点 s1,2 = 0.33 ± j0.58 ,根据根之和法则,9所以,无超调时 K 的取值范围为 0 < K = 0.1925 。392333d 1 + 1 ( 1) ×+ 1 =1当 0<K<3 时系统稳定, K =31333ù =± 2, K = 3与虚轴交点:1 + GH = s(s + 1)(0.5s + 1) + K = 0.5s3 + 1.5s2 + s + K 0.5( jù )3 + 1.5( jù )2 + jù + K = 02分离角为 ±ð3(k =

36、 1) ð331 ,(k = 1),分离点坐标 s = ðá =3(2k + 1)ð3(k = 0)ð3 条渐近线与实轴夹角3a渐近线交点为 ó =(0 1 2) = 1160D4-3 解:根轨迹如图极点 P1 = 0, P2 = 1, P3 = 2 ,共有三条渐近线17由根轨迹可以看出适当增加零点可以改善系统稳定性,使本来不稳定的系统变得稳定。ó % = 25%4-5 解:(题目改为单位负反馈)nîù0.01s2 + 0.08s + 1= 0.88s , ùn = 10 , î =

37、0.4 , ts =系统可以 看作 ö (s) =3.510.590.67231与零点 z=构成偶极子,所以主导极点为 s , s ,即(2)由于极点为 s1 = 110.67s + 1s,t = 3T = 2s,ó % = 0即ö (s) =10.6712,3= 4 ± j9.2 ,主导极点为 s ,系统看成一阶系统。1.5 , s4-4 解:(1) s1 = 1nî = 0.5 ,ùn = 0.667 ,其阶跃响应下的性能指标为ó % = 16.3% , ts = îù = 10.5s 。13.51(

38、s s )(s s2)s2 + 0.667s + 0.445,从而得到=主导极点,系统近似为二阶,即ö (s) =0.445s1s2 s1 + s2 + s3 = p1 + p2 + p3 ,求得 s3 = 2.34 。s3 对虚轴的距离是 s1,2 的 7 倍,故认为 s1,2 是18s(s + 8)(1) G(s) =1605-3 解:s2 + 44.37s + 986.96G(s) =986.96 R = 44959(Ù)10ð ×106 R= 0.7081ð 2100ð 2 ×106= 1013(H ) L =110

39、41 100ð 2 L ×106 + 10ð ×106 Rj,1LCs2 + RCs + 1G(10ð j) =设 G(s) =15超过10D ,所以不满足要求。5-2 解:ù = 2ð f = 2ð × 5 = 10ð , G(10ð j) = 3.54 = 0.708, G(10ð j) = 90D5-1 解: 0 = arctan ùT = arctan 2ð f × T = arctan 2ð ×10 × 0

40、.01 = 32.14 ,相位差D第五章习题答案19s(s + 0.5)(s2 + 3.2s + 64)(3) G(s) =64(s + 2)s(s + 1)(s + 20)(2) G(s) =100(s + 2)20L(ùk ) = 20 lg K 20 lg ùk = 0 , K = ùk = 100 ,由图可知ùr = 45.3 ,nnùù 21s(s2 + 2 î s + 1)由一个放大环节、一个积分环节、一个振荡环节组成(c) G(s) =K80s( 1 s + 1)40 K = 40G(s) =80Tccc1=

41、0 ,1ù = 1 = 80 T =,穿越频率ù = 40 , L(ù ) = 20 lg K 20 lg ùs(Ts + 1)由一个放大环节、一个积分环节、一个惯性环节组成(b) G(s) =K0.1s + 1G(s) =10T20 lg K = 20, K = 10 ;ù1 = 10 T = 0.11Ts + 1由一个放大环节、一个惯性环节组成K5-4 解:(a) G(s) =s(s2 + s + 1)(s2 + 4s + 25)(4) G(s) =s(s + 0.1)21伯德图:50s (s + 1)s (s + 50)221, 20 l

42、g K = 14=52505-5 解:(1) G(s) =s(0.25s2 + 0.2s + 1)G(s) =10(s + 1)L = 20 lg K = 20 , K = 102î,在 ù1 = 1 处, = 8 î = 0.2ù1 = 1 ô = 1 , ù2 = 2 ùn = 2 , 20 lg1nnùù 2s(s2 + 2s + 1)1î(e) G(s) =K (ô s + 1)101s2 (s + 1)2K = 0.1990 ,G(s) = 0.1990(10s + 1) )

43、2c( 或 者采用 精 确表示 : L(ù ) = 20 lg K + 20 lg 102 + 1 20 lg12 20 lg(1 + 1) = 0 ,s2 (s + 1)2ccL(ù ) = 20 lg K + 20 lg10 20 lg(ù 2 + 1) = 0 , K = 0.2 ,G(s) = 0.2(10s + 1)ù1 = 0.1 得ô = 10 ; ù2 = 1 得T = 1组成s2 (Ts + 1)2由一个放大环节、一个微分环节、两个积分环节、两个惯性环节(d) G(s) =K (ô s + 1)s(s2 +

44、 30s + 2.5 ×103 )G(s) =2.5 ×103 ×1001 2î 22î 1 î 2nn20 lg,得到ù 50 ,î = 0.3 (0.954 舍去)。= 4.85 ,ù =1ùr22P = 0, N = 0 无穿越,故 Z = P 2 N = 0 稳定155s( s + 1)(s + 1)11, 20 lg K = 10.46(2) G(s) =s(s + 5)(s + 15) 3 250有一次负穿越, P = 0 , Z = P 2N = 2 故不稳定1023s(0.5s

45、+ 1)(0.02s + 1)5-6 解: G(s) =,ù1 = 2,ù2 = 50, 20 lg K = 2010P = 0, N = 0 无穿越,故 Z = P 2 N = 0 稳定155s2 ( s + 1)(s + 1)s (s + 5)(s + 15)211, 20 lg K = 10.46=(3) G(s) = 3 250(s + 1)10 (s + 1)24 ùn Lh = 20 lg G( jùg ) = 20 ù 1 g= 180 ,得ù = 102g求ùg , 90 arctanDDùn

46、49;2î gùn = 10,î = 0.05s(0.01s2 + 0.01s + 1)5-7 解: G(s) =K10(5 j + 1)(0.2 j + 1)gh 20 lg 5 = 13.98 dBL = 20 lg G( jù ) = 20 lg10DDDDDDDã = 180 arctg (0.5ùc ) arctg (0.02ùc ) 90 = 180 66 5 90 = 190.01= 10得 0.5ùg i0.02ùg = 1 ùg =1(90 + arctg (0.5ù

47、g ) + arctg (0.02ùg ) = 180DD20 lg K 20 lg ùc 20 lg(0.5ùc ) = 0 ,得ùc 20 = 2 5 4.47 (精确解 4.2460);25(2)= 70.36D= 180D 90D + 78.69D 84.29D 14.04D= 180 90 + tg (5ùc1 ) tg (10ùc1 ) tg (0.25ùc1 )111DDã1 = 180 + G( jùc1 )Ds(10s + 1)(0.25s + 1)G(s) =2(5s + 1)1

48、15;10 ×1c1= 1 K = 2ù = 1 K × 5得ô 2 = 5, T1 = 10,T3 = 0.25T3T1ô 2(1)= 0.2,= 0.1,= 4111s(T1s + 1)(T3 s + 1)5-8 解: G(s) =K (ô 2 s + 1) 10 1 = 0.1 902因为ùc = 0.1 ,ã = 180 90 arctgDDD0.01× 0.1s(0.01s2 + 0.01s + 1)G(s) =0.1ggg(0.01× ù )2 + (1 0.01ù

49、; 2 )2ùc= 0.1,得 K = 0.1 ù = 0.1K26= ã1系统稳定性不变= 180 90 + tg (5ùc1 ) tg (10ùc1 ) tg (0.25ùc1 )111DD111DD= 180 90 + tg (0.5ùc 2 ) tg (ùc 2 ) tg (0.025ùc 2 )ã 2 = 180 + G( jùc 2 )Ds(s + 1)(0.025s + 1)G(s) =20(0.5s + 1) K ' = 2010 ×10= 1ùc 2 = 10 = 10ùc1 K ' × 0.5 ×10s(s + 1)(0.025s + 1)G(s) =K ' (0.5s + 1)(3)右移 10 倍频程,则T1 = 1,ô 2 = 0.5, T3 = 0.025P = 0, N = 0 (无穿越) Z = P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论