




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019年江苏省高考说明数学科一、命题指导思想2019年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据普通高中数学课程标准(实验),参照普通高等学校招生全国统一考试大纲,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系
2、的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命
3、题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以
4、解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2中的内容以及选修系列4中专题4-2矩阵与变换、4-4坐标系与参数方程、4-5不等式选讲这3个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初
5、步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1必做题部分内 容要 求ABC1集合集合及其表示 子集 交集、并集、补集 2函数概念与基本初等函数函数的概念 函数的基本性质 指数与对数 指数函数的图象与性质 对数函数的图象与性质 幂函数 函数与方程
6、0;函数模型及其应用 3基本初等函数(三角函数)、三角恒等变换三角函数的概念 同角三角函数的基本关系式 正弦函数、余弦函数的诱导公式 正弦函数、余弦函数、正切函数的图象与性质 函数的图象与性质 两角和(差)的正弦、余弦及正切 二倍角的正弦、余弦及正切 4解三角形正弦定理、余弦定理及其应用 5平面向量平面向量的概念 平面向量的加法、减法及数乘运算 平面向量的
7、坐标表示 平面向量的数量积 平面向量的平行与垂直 平面向量的应用 6数列数列的概念 等差数列 等比数列 7不等式基本不等式 一元二次不等式 线性规划 8复数复数的概念 复数的四则运算 复数的几何意义 9导数及其应用导数的概念 导数的几何意义 导数的运算
8、60;利用导数研究函数的单调性与极值 导数在实际问题中的应用 10算法初步算法的含义 流程图 基本算法语句 11常用逻辑用语命题的四种形式 充分条件、必要条件、充分必要条件 简单的逻辑联结词 全称量词与存在量词 12推理与证明合情推理与演绎推理 分析法与综合法 反证法 13概率、统计抽样方法 总体分布的估计
9、60; 总体特征数的估计 随机事件与概率 古典概型 几何概型 互斥事件及其发生的概率 14空间几何体柱、锥、台、球及其简单组合体 柱、锥、台、球的表面积和体积 15点、线、面之间的位置关系平面及其基本性质 直线与平面平行、垂直的判定及性质 两平面平行、垂直的判定及性质 16平面解析几何初步直线的斜率和倾斜角 直线方程 直线的
10、平行关系与垂直关系 两条直线的交点 两点间的距离、点到直线的距离 圆的标准方程与一般方程 直线与圆、圆与圆的位置关系 17圆锥曲线与方程中心在坐标原点的椭圆的标准方程与几何性质 中心在坐标原点的双曲线的标准方程与几何性质 顶点在坐标原点的抛物线的标准方程与几何性质 2附加题部分内 容要 求ABC 选修系列:不含选修系列中的内容1圆锥曲线与方程曲线与方程 顶点在坐标原点的抛物线的
11、标准方程与几何性质 2空间向量与立体几何空间向量的概念 空间向量共线、共面的充分必要条件 空间向量的加法、减法及数乘运算 空间向量的坐标表示 空间向量的数量积 空间向量的共线与垂直 直线的方向向量与平面的法向量 空间向量的应用 3导数及其应用简单的复合函数的导数4推理与证明数学归纳法的原理 数学归纳法的简单应用 5计数原理加法原理与乘法原理
12、160;排列与组合 二项式定理 6概率、统计离散型随机变量及其分布列 超几何分布 条件概率及相互独立事件 次独立重复试验的模型及二项分布 离散型随机变量的均值与方差 选修系列中个专题 7几何证明选讲相似三角形的判定与性质定理 射影定理圆的切线的判定与性质定理 圆周角定理,弦切角定理 相交弦定理、割线定理、切割线定理 圆内接四边形的判定与性质定理 8矩阵与变
13、换矩阵的概念 二阶矩阵与平面向量 常见的平面变换 矩阵的复合与矩阵的乘法 二阶逆矩阵 二阶矩阵的特征值与特征向量 二阶矩阵的简单应用 9.坐标系与参数方程坐标系的有关概念 简单图形的极坐标方程 极坐标方程与直角坐标方程的互化 参数方程 直线、圆及椭圆的参数方程 参数方程与普通方程的互化 参数方程的简单应用 10不等式选讲不等式的基本性质&
14、#160; 含有绝对值的不等式的求解 不等式的证明(比较法、综合法、分析法)算术-几何平均不等式与柯西不等式利用不等式求最大(小)值运用数学归纳法证明不等式三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1必做题 必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2附加题 附加题部分由解答题组成,共5题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共3小题,依次考查选修系列4
15、中4-2、4-4、4-5这3个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数满足(i是虚数单位),则的虚部为_【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】2. 设集合,则实数的值为_ 【解析】本题主要考查集合的概念
16、、交集运算等基础知识.本题属容易题.I1S1While I<6II+2S2SEnd WhilePrint S【答案】1.3.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为_.【解析】本题主要考查伪代码的基础知识,本题属容易题.【答案】84.某棉纺厂为了解一批棉花的质量,从中随机抽取了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间中,其频率分布直方图如图所示,则在抽测的根中,有_ _根棉花纤维的长度小于.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题.【答案】由频率分布直方图观察得棉花纤维长度小于的频率为,故频数为.5. 将一颗质地均
17、匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题.【答案】6. 已知函数,它们的图像有一个横坐标为的交点,则的值是_.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.【答案】.7.在各项均为正数的等比数列中,若的值是_.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题.【答案】4.8.在平面直角坐标系中,双曲线的右准
18、线与它的两条渐近线分别交于,其焦点是,则四边形的面积是_.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.考察运算求解能力.本题属中等难度题.【答案】9.设D、E分别是ABC的边AB、BC上的点,且.若(、均为实数),则+的值为 【解析】本题主要考查平面向量的概念、平面向量的运算等基础知识.考察运算求解能力.本题属中等难度题.【答案】.10.如图所示,正方体的棱长为2,以其所有面的中心为定点的多面体的体积为_.【解析】本题主要考查简单多面体的概念、四棱锥的体积等基础知识.考察空间想象和运算求解能力.本题属中等难度题.【答案】.11
19、.若函数在内有且只有一个零点,则在上的最大值与最小值的和为_.【解析】本题主要考查利用导数研究函数性质、一元二次不等式等基础知识.考察数形结合思想,考察运算求解能力.本题属中等难度题.【答案】-3.12.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.【答案】13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若,则点P的横坐标的取值范围是 【解析】本题主要考察圆的方程、圆与圆的位置关系、向量的数量积等基础知识.考察数形结合思想,考察运算求解能力.
20、本题属中等难度题.【答案】14.在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 .【解析】本题主要考察两角和(差)的三家函数、基本不等式等基础知识.考察等价转化思想和运算求解能力.本题属难题.【答案】8.二、解答题15在中,角.已知(1)求值;(2)求的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.【参考答案】(1)在中,因为, 故由正弦定理得,于是. 所以.(2)由(1)得.所以.又因为,所以.从而.在,所以.因此由正弦定理得.16如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E
21、、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力本题属容易题【参考答案】证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以.又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.17.如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离
22、为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c. 因为椭圆E的离心率为,两准线之间的距离为8,所以, 解得,于是, 因此椭圆E的标准方程是.(2)由(1)知,.设,因为点为第一象限的点,故.当时,与相交于,与题设不符.当时,直线的斜率为,直线的斜率为.因为,所以直线的斜率为,直线
23、的斜率为,从而直线的方程:, 直线的方程:. 由,解得,所以.因为点在椭圆上,由对称性,得,即或.又在椭圆E上,故.由,解得;,无解.因此点P的坐标为.18. 如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点位于点正北方向60处,点位于点正东方向170处,(为河岸),.(1)求新桥的长;(2)当多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.【参考答案】解法
24、一:(1) 如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0, 60),C(170, 0),直线BC的斜率k BC=tanBCO=.又因为ABBC,所以直线AB的斜率k AB=.设点B的坐标为(a,b),则k BC= k AB=解得a=80,b=120. 所以BC=.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m,(0d60).由条件知,直线BC的方程为,即由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大. 所以当
25、OM = 10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA, CB交于点F.因为tanBCO=.所以sinFCO=,cosFCO=.因为OA=60,OC=170,所以OF=OC tanFCO=.CF=,从而.因为OAOC,所以cosAFB=sinFCO=,又因为ABBC,所以BF=AF cosAFB=,从而BC=CFBF=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MDBC,且MD是圆M的半径,并设MD=r m,OM=d m(0d60).因为OAOC,所以sinCFO =cosFCO,故由(1)知,sinCFO =所以.因为O和A到
26、圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大.所以当OM = 10 m时,圆形保护区的面积最大.19.记分别为函数的导函数,若存在,满足且,则称为函数的一个“点”.(1)证明:函数不存在“点”;(2)若函数存在“点”,求实数a的值;(3)已知函数.对任意的,判断是否存在,使函数在区间内存在“点”,并说明理由.【解析】本题主要考察利用导数研究初等函数的性质,考察综合运用数学思想方法分析与解决问题的能力.本题属于难题.【参考答案】20. 设数列的前n项和为若对任意的正整数n,总存在正整数m,使得,则称是“H数列”(1)若数列的前n项和,证明:是“H数列”;(2)设是等差数列,其首项,公差若是“H数列”,求d的值;(3)证明:对任意的等差数列,总存在两个“H数列”和,使得成立【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力本题属难题【参考答案】(1)当时,当时,时,当时,是“H数列”(2)对,使,即取得,又,(3)设的公差为d令,对,对,则,且为等差数列的前n项和,令,则当时;当时;当时,由于n与奇偶性不同,即非负偶数,因此对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省牡丹江市2025届三下数学期末综合测试模拟试题含解析
- 原始社会教育形态
- 找到重点:2024年监理工程师试题及答案
- 如何帮助宝宝度过逆反期试题及答案
- 2024年银行考试经典试题及答案
- 2024年陪诊师复习指南与试题及答案
- 工程质量管理体系的试题及答案
- 电子商务课程的产业对接与实训基地建设试题及答案
- 2025年河南省安全员考试题库及答案
- 电子商务教师资格证考试常见考题及答案解析
- T-CSCP 0019-2024 电网金属设备防腐蚀运维诊断策略技术导则
- 2025中考道德与法治核心知识点+易错易混改错
- 授权独家代理商合作协议2025年
- 《技术分析之均线》课件
- 小儿高热惊厥护理查房
- 2025年度全款文化演出门票购买合同4篇
- 临床基于高级健康评估的高血压Ⅲ级合并脑梗死患者康复个案护理
- 2025年厦门建发股份有限公司招聘笔试参考题库含答案解析
- 2025年中国EAM系统行业发展前景预测及投资战略研究报告
- 《基于三维荧光技术的水环境污染源深度溯源技术规范》
- 《反洗钱知识培训》课件
评论
0/150
提交评论