



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上#include "stdio.h"#include <math.h>const double e = 2.;/设置一个神经网络/有一个隐藏层(含有两个节点)/输出层有一个节点/输入数据是二维(两个节点)/一个样本数据为:x = (0.35,0.9) 标签为0.5/初始权值输入节点1到隐藏层:0.1,0.4/输入节点2到隐藏层:0.8,0.6/隐藏层到输出层初始权值为:0.3,0.9/学习速率为1double changeWeightFromHiddenToOutput(double cost,double output,double
2、hiddenLayerCode)double result=0;result = cost*output*(1-output)*hiddenLayerCode;return result;double changeWeightFromInputToHidden(double cost,double output,double weightOfHiddenCodeToOutput,double weightOfHiddenCode,double inputNum)double result=0;result = cost*output*(1-output)*weightOfHiddenCodeT
3、oOutput*weightOfHiddenCode*(1-weightOfHiddenCode)*inputNum;return result;double sigmoidFunction(double x)double result=0;result = 1/(1+pow(e,-x);return result;double costFunction(double originalSignal,double outputOfOurCalculation)/此处采取的损失函数是最小二乘法double cost=0;cost = (1/2.0)*(originalSignal-outputOf
4、OurCalculation)*(originalSignal-outputOfOurCalculation);return cost;double upDateWeightFunction(double originalValue,double gradient)double updatedWeight=originalValue;updatedWeight = updatedWeight - fabs(gradient);return updatedWeight;int main(void)double weightFromInputToHidden2=0.1,0.4,0.8,0.6;do
5、uble weightFromHiddenToOutput=0.3,0.9;double firstHiddenCode,secondHiddenCode,outputCode;double inputValue =0.35,0.9;double originalSignal = 0.5;double cost=0;double weightChangeNum=0;double addWeightSum = 0;firstHiddenCode = 0;secondHiddenCode = 0;outputCode = 0;/前向传播addWeightSum = weightFromInputT
6、oHidden00*inputValue0 + weightFromInputToHidden10*inputValue1; firstHiddenCode = sigmoidFunction(addWeightSum);addWeightSum = weightFromInputToHidden01*inputValue0 + weightFromInputToHidden11*inputValue1;secondHiddenCode = sigmoidFunction(addWeightSum);addWeightSum = weightFromHiddenToOutput0*firstH
7、iddenCode + weightFromHiddenToOutput1*secondHiddenCode; outputCode = sigmoidFunction(addWeightSum);/计算误差cost = costFunction(originalSignal,outputCode);printf("nn(0)firNode:%f secNode:%f outNode:%f cost:%f",firstHiddenCode,secondHiddenCode,outputCode,cost);printf("nntt输入到隐藏层的权值:tt"
8、;);for(int i=0;i<2;i+)printf("ntt");for(int j=0;j<2;j+)printf(" %lf ",weightFromInputToHiddenij);printf("nntt隐藏层到输出的权值:ntt");for(i=0;i<2;i+)printf(" %lf ",weightFromHiddenToOutputi);for(int iteration = 0;iteration<1;iteration+)/更新隐藏层到输出层权值/weightCh
9、angeNum为相应权值的梯度weightChangeNum = changeWeightFromHiddenToOutput(cost,outputCode,firstHiddenCode);weightFromHiddenToOutput0 = upDateWeightFunction(weightFromHiddenToOutput0,weightChangeNum);weightChangeNum = changeWeightFromHiddenToOutput(cost,outputCode,secondHiddenCode);weightFromHiddenToOutput1 =
10、upDateWeightFunction(weightFromHiddenToOutput1,weightChangeNum);/更新输入层到隐藏层的权值weightChangeNum = changeWeightFromInputToHidden(cost,outputCode,weightFromHiddenToOutput0,firstHiddenCode,inputValue0);weightFromInputToHidden00 = upDateWeightFunction(weightFromInputToHidden00,weightChangeNum);weightChange
11、Num = changeWeightFromInputToHidden(cost,outputCode,weightFromHiddenToOutput1,secondHiddenCode,inputValue0);weightFromInputToHidden01 = upDateWeightFunction(weightFromInputToHidden01,weightChangeNum);weightChangeNum = changeWeightFromInputToHidden(cost,outputCode,weightFromHiddenToOutput0,firstHidde
12、nCode,inputValue1);weightFromInputToHidden10 = upDateWeightFunction(weightFromInputToHidden10,weightChangeNum);weightChangeNum = changeWeightFromInputToHidden(cost,outputCode,weightFromHiddenToOutput1,secondHiddenCode,inputValue1);weightFromInputToHidden11 = upDateWeightFunction(weightFromInputToHid
13、den11,weightChangeNum);/再次进行前向传播addWeightSum = weightFromInputToHidden00*inputValue0 + weightFromInputToHidden10*inputValue1; firstHiddenCode = sigmoidFunction(addWeightSum);addWeightSum = weightFromInputToHidden01*inputValue0 + weightFromInputToHidden11*inputValue1;secondHiddenCode = sigmoidFunctio
14、n(addWeightSum);/输出addWeightSum = weightFromHiddenToOutput0*firstHiddenCode + weightFromHiddenToOutput1*secondHiddenCode; outputCode = sigmoidFunction(addWeightSum);/计算误差cost = costFunction(originalSignal,outputCode);printf("nn(%d)firNode:%f secNode:%f outNode:%f cost:%f",iteration+1,firstHiddenCode,secondHiddenCode,outputCode,cost);printf("nntt输入到隐藏层的权值:tt");for(int i=0;i<2;i+)printf("ntt");for(int j=0;j<2;j+)printf(" %lf ",
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 爱国戍边英雄班会课件
- 项目需求分析解读与策划方案
- 瘠薄粮田高产玉米:氮磷限制型瘠薄粮田的养分积累与转运特性研究
- 烯烃合成技术
- 绿鳍鲀肝中的抗菌肽及其功能研究
- 工程教育认证制度下力学课程体系重构实践
- 土壤肥力分级与氮矿化之间的关系研究
- 电子元件制造中触头材料性能提升的研究
- 燃气安全技术课件
- 计量校准员岗位面试问题及答案
- 2025届广东省佛山市南海中学英语八下期末考试模拟试题含答案
- 铁路行车安全培训课件
- 山东济南天桥区2024-2025 学年第二学期七年级地理期末考试试题含答案
- 2025安全生产月活动总结模板十(19P)
- 内蒙古呼和浩特实验教育集团2025届八下英语期末考试试题含答案
- 山西省2025年中考第三次模拟考试语文试卷(含答案)
- 肾上腺疾病讲课件
- 2025年甘肃省中考道德与法治试卷(含标准答案)
- 毕业设计(论文)-8m3连续搅拌釜式反应器设计
- (高清版)DB13∕T 2937-2019 非煤矿山双重预防机制建设规范
- 2025年餐饮管理与服务技能考试卷及答案
评论
0/150
提交评论