




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1433 一次函数与二元一次方程(组)第一课时庄浪县万泉中学 徐 辉 教学目标 (一)教学知识点 学会利用函数图象解二元一次方程组毛 运用函数知识解决实际问题 (二)能力训练要求 经历观察、思考等数学活动,发展推理能力,能有条理地、清晰地阐述观点 体验数形结合思想意义,逐步学习利用数形结合思想分析问题和解决问题,提高解决实际问题的能力 体会解决问题的策略多样性,发展实践能力和创新精神 (三)情感与价值观要求 积极参与活动,提高学习兴趣及求知欲 养成实事求是的态度及独立思考的习惯 教学重点 归纳图象法解二元一次方程组的具体方法 灵活运用函数知识解决实际问题 教学难点 灵活运用函数知识解决相关实际
2、问题 教学方法 引导启发 思考探究 教具准备 大白纸 教学过程 一提出问题,创设情境教师提出问题,引出课题(书写课题,出示学习目标)二、导入新课请同学们阅读课本127页内容,并完成以下问题:探究活动一问题1.已知2x+y=5,用含x的代数式表示y,则y= 。(可以看成以x为自变量的一次函数)2.方程2x+y=5的解有 个。x=2y=1是方程2x+y=5的一个解吗?3. 4.(2,1)是否是直线y= -2x+5上的一个点?5、直线y=2 x+5上任取一点(x,y),则(x,y)一定是方程2x+y=5的解吗?为什么? 通过上述问题的讨论,你认为一次函数与二元一次方程有何关系?设计意图:
3、通过设置问题使学生认识并体会到二元一次方程的解与一次函数图象上的点是对应关系。让学生在交流讨论,归纳概括的过程中建立数学模型:探究活动二2x+y=5x-y=1问题1、方程组 的解是 。2、在同一直角坐标系中画出直线y=x-1与y=2 x+5的图象,并思考: (1)它们有交点吗? (2)当自变量x取何值时,函数y=x-2与y=2 x+7的值相等?这时的函数值是多少?的解有何关系?2x+y=5x-y=1(3)交点的坐标与方程组通过以上问题讨论:你认为一次函数与二元一次方程组有何关系?你能得到哪些启示呢?设计意图通过活动二。让学生进一步理解一次函数与二元一次方程组的关系。为活动三打下基础。1、从“形
4、”的角度理解:解方程组相当于确定两直线交点坐标。2、通过问题使学生从“数”的角度理解:解方程组相当于考虑自变量为取何值时,两个函数值相等。探究活动三问题:一家电信公司给顾客提供上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按上网时间计费。如何选择收费方式能使上网者更合算。设计意图: 通过这个活动,熟悉巩固用一次函数知识求二元一次方程组问题的方法,进一步提高把实际问题转化为数学问题的能力 解法一: 设上网时间为x分钟,若按方式收费,y=01x元;若按方式收费,y=005x+20元在同一直角坐标系中分别画出这两个函数图象 解方程组: 得 所
5、以两图象交于点(400,40),从图象上可以看出: 当0<x<400时, y < y 当x=400时, y = y 当x>400时, y > y 因此,当一个月内上网时间少于400分钟时,选择方式省钱;当上网时间等于400分钟时,选择方式、都一样;当上网时间多于400分钟时,选择方式省钱 方法二: 设上网时间为x分钟,方式与方式两种计费的差额为y元,则y随x变化的函数关系式为: y=(005x+20)-01x 化简:y=-005x+20在直角坐标系中画出函数的图象 计算出直线y=-005x+20与x轴交点为(400,0) 由图象可知: 当0<x<400
6、时,y>0,即选方式省钱 当x=400时,y=0,即选方式、都一样 当x>400时,y<0,即选方式省钱 总结: 师通过以上活动,使我们清楚看到函数在解决变量关系问题时的优越性,但在确定分界点位置时,又要借助方程来准确求值 联系以前所学方程(组),不等式与函数都是基本的数学模型,它们之间互相联系,用函数观点可以把它们统一起来,解决实际问题时,应根据具体情况把这些数学模型结合起来使用三、课堂练习1、 已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是_2、把2x-y=2变为一次函数的形式为y= 3、两种移动电话计费方式如下:全球通神州行月租费50元/月0本地
7、通话费0.40元/分0.60元/分 用函数方法解答如何选择计费方式更省钱 解法一: 设每月通话时间累计x分钟,则全球通月消费y=040x+50元;神州行月消费:y=060x元在同一坐标系中画出两个一次函数的图象 解方程组: 得 所以两图象交于点(250,150) 由图象可以看出: 当0<x<250时 040x+50>060x, 当x=250时 040x+50=060x, 当x>250时 040x+50<060x 因此,当一个月通话时间少于250分时,选择神州行省钱;当一个月通话时间等于250分钟时,选择全球通与神州行没有区别;当一个月通话时间多于250分钟时,选择
8、全球通省钱 方法二: 设一个通话时间累计为x分,全球通与神州行两种计费差额为y元,则y随x变化的函数关系式为: y=(040x+50)-060x 化简为:y=-020x+50 在直角坐标系中画出这个函数图象计算出直线y=-020x+50与x轴的交点为(250,0) 由图象可以看出: 当0<x<250时,y>0,即选神州行省钱 当x=250时,y=0,即选神州行与全球通没有区别 当x>250时,y<0,即选全球通省钱由此可以得到与方法一相同的结论设计意图: 这一活动,有利于巩固所学知识,熟悉具体问题如何灵活地、有机地把数学模型结合起来使用四、合作交流,归纳整理 学生
9、讨论交流,充分发表自己的意见,共同归纳得到:1、二元一次方程(组)与一次函数的关系。2、从“数”和“形”两个方面去看二元一次方程组。3、方法:从函数的观点来认识问题、解决问题,用图象法解二元一次方程组。4、生活中遇到实际问题,要用数学方法来解决. 设计意图 通过小结归纳本节课的学习内容,培养学生善于思考的好习惯。五、课后作业 课本习题§11·1·3第5、6题和第11题。 板书设计1133 一次函数与二元一次方程(组)一、一次函数与二元一次方程关系二、利用函数图象解二元一次方程组三、用函数观点解决实际问题四、随堂练习 1433 一次函数与二元一次方程(组)(第一课时
10、)庄浪县万泉中学 徐 辉 教学目标 (一)教学知识点 学会利用函数图象解二元一次方程组毛运用函数知识解决实际问题 (二)能力训练要求 经历观察、思考等数学活动,发展推理能力,能有条理地、清晰地阐述观点 体验数形结合思想意义,逐步学习利用数形结合思想分析问题和解决问题,提高解决实际问题的能力 体会解决问题的策略多样性,发展实践能力和创新精神 (三)情感与价值观要求 积极参与活动,提高学习兴趣及求知欲。 养成独立思考的习惯 教学重点 用图象法解二元一次方程组 灵活运用函数知识解决实际问题 教学难点 灵活运用函数知识解决相关实际问题 教学方法: 引导启发 思考探究 教具准备: 大白纸 教学过程 一提
11、出问题,创设情境教师提出问题,引出课题(书写课题,出示学习目标)二、导入新课:请同学们阅读课本127页内容,并完成以下问题:探究活动一问题1.已知2x+y=5,用含x的代数式表示y,则y= 。2.方程2x+y=5的解有 个。x=2y=1是方程2x+y=5的一个解吗?3. 4.(2,1)是否是直线y= -2x+5上的一个点?5、直线y=2 x+5上任取一点(x,y),则(x,y)一定是方程2x+y=5的解吗?为什么? 通过上述问题的讨论,你认为一次函数与二元一次方程有何关系?设计意图:通过设置问题使学生认识并体会到二元一次方程的解与一次函数图象上的点是对应关系。让学生在交流讨论,归纳
12、概括的过程中建立数学模型:探究活动二2x+y=5x-y=1问题1、方程组 的解是 。2、在同一直角坐标系中画出直线y=x-1与y=2 x+5的图象,并思考: (1)它们有交点吗? (2)当自变量x取何值时,函数y=x-1与y=2 x+5的值相等?这时的函数值是多少?的解有何关系?2x+y=5x-y=1(3)交点的坐标与方程组通过以上问题讨论:你认为一次函数与二元一次方程组有何关系?你能得到哪些启示呢?设计意图通过活动二,让学生进一步理解一次函数与二元一次方程组的关系。为活动三打下基础。1、从“形”的角度理解:解方程组相当于确定两直线交点坐标。2、通过问题使学生从“数”的角度理解:解方程组相当于
13、考虑自变量为取何值时,两个函数值相等。探究活动三问题:一家电信公司给顾客提供上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按上网时间计费。如何选择收费方式能使上网者更合算。设计意图: 通过这个活动,熟悉巩固用一次函数知识求二元一次方程组问题的方法,进一步提高把实际问题转化为数学问题的能力解法:略 总结: 师 方程(组),不等式与一次函数都是互相联系的,用函数观点可以把它们统一起来。在解决实际问题时,应根据具体情况把这些问题结合起来使用三、课堂练习1、 已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是 2、把2x-y
14、=2变为一次函数的形式为y= 全球通神州行月租费50元/月0本地通话费0.40元/分0.60元/分 3、两种移动电话计费方式如下:用函数方法解答如何选择计费方式更省钱 设计意图: 这一活动,有利于巩固所学知识,熟悉具体问题如何灵活地、有机地把数学模型结合起来使用四、合作交流,归纳整理 学生讨论交流,充分发表自己的意见,共同归纳得到:1、二元一次方程(组)与一次函数的关系。从“数”和“形”两个方面去看二元一次方程组。2、方法:从函数的观点来认识问题、解决问题,用图象法解二元一次方程组。3、生活中遇到实际问题,要用数学方法来解决. 五、课后作业 课本习题§14·3第5、6题和第
15、11题。 板书设计1133 一次函数与二元一次方程(组)一、一次函数与二元一次方程关系二、利用函数图象解二元一次方程组三、用函数观点解决实际问题四、随堂练习探究活动一问题1.已知2x+y=5,用含x的代数式表示y,则y= 。2.方程2x+y=5的解有 个。x=2y=1是方程2x+y=5的一个解吗?3. 4.(2,1)是否是直线y= -2x+5上的一个点?5、直线y=2 x+5上任取一点(x,y),则(x,y)一定是方程2x+y=5的解吗?为什么? 通过上述问题的讨论,你认为一次函数与二元一次方程有何关系?探究活动二2x+y=5x-y=1问题1、方程组 的解是 。2、在同一直角坐标系中画出直线y=x-1与y=2 x+5的图象,并思考: (1)它们有交点吗? (2)当自变量x取何值时,函数y=x-1与y=2 x+5的值相等?这时的函数值是多少?的解有何关系?2x+y=5x-y=1(3)交点的坐标与方程组 通过以上问题讨论:你认为一次函数与二元一次方程组有何关系?你能得到哪些启示呢?探究活动三问题:一家电信公司给顾客提供上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按网时间计费。如何选择收费方式能使上网者更合算。 解法一:设上网时间为x分钟,若按方式收费,y= 元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新版GMP新理念介绍
- 婚礼女方代表简短致辞
- 妇产科医生年度工作总结
- 女生节主题活动策划方案
- 烟台文化旅游职业学院《创作练习》2023-2024学年第二学期期末试卷
- 2025-2030年中国ATM机行业发展形势分析及投资风险预警研究报告
- 短期和长期理财目标的区别计划
- 促进亲子互动的幼儿园活动安排计划
- 制定仓库客户服务优化计划
- 深化人文关怀的服务理念的推广计划
- GB/T 19025-2023质量管理能力管理和人员发展指南
- 装饰装修挂靠工程合同协议书范本
- 一案八制方案
- 外协外购入库单表格
- 绿化工程施工合同(5篇)
- 全套课件公共部门人力资源管理
- 《清明》说课比赛课件
- 出租房屋安全检查记录
- 《卖炭翁》课件-优秀实用
- 科学素养大赛题库及答案(500题)
- 2023年绥滨县社区工作者招聘考试笔试题库及答案解析
评论
0/150
提交评论