




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、172 实际问题与反比例函数 教学目标 1知识与技能 学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题 2过程与方法 感受实际问题的探索方法,培养化归的数学思想和分析问题的能力 3情感、态度与价值观 体验函数思想在解决实际问题中的应用,养成用数学的良好习惯 教学重点难点 重点:用反比例函数解决实际问题 难点:构建反比例函数的数学模型 课时安排 2课时 教与学互动设计第1课时 (一)创设情境,导入新课 一位司机驾驶汽车从甲地去乙地,他以80千米时的平均速度用6小时到达目的地 (1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系? (2
2、)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少? (二)合作交流,解读探究 探究 (1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=的反比例函数关系式 (2)若要在4小时内回到甲地(原路),则速度显然不能低于=120(千米/时) 归纳 常见的与实际相关的反比例 (1)面积一定时,矩形的长与宽成反比例; (2)面积一定时,三角形的一边长与这边上的高成反比例; (3)体积一定时,柱(锥)体的底面积与高成反比例; (4)工作总量一定时,工作效率与工作时间成反比例; (5)总价一定时,单价与商品的件数成反比例; (6)溶质一定时,溶
3、液的浓度与质量成反比例 (三)应用迁移,巩固提高 例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m (1)试求眼镜度数y与镜片焦距x之间的函数关系式; (2)求1 000度近视眼镜镜片的焦距 【分析】 把实际问题转化为求反比例函数的解析式的问题 解:(1)设y=,把x=0.25,y=400代入,得400=, 所以,k=400×0.25=100,即所求的函数关系式为y= (2)当y=1 000时,1000=,解得=0.1m 例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象 (1)请你根据
4、图象提供的信息求出此蓄水池的蓄水量; (2)写出此函数的解析式; (3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完? 【分析】 当蓄水总量一定时,每小时的排水量与排水所用时间成反比例 解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3) (2)因为此函数为反比例函数,所以解析式为:V=; (3)若要6h排完水池中的水,那么每小时的排水量为:V=8000(m3); (4)如果每小时排水量是5 000m3,
5、那么要排完水池中的水所需时间为:t= =8000(m3) 备选例题 (2005年中考·四川)制作一种产品,需先将材料加热到达60后,再进行操作设该材料温度为y(),从加热开始计算的时间为x(分钟)据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示)已知该材料在操作加工前的温度为15,加热5分钟后温度达到60 (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15时,须停止操作,那么从开始加热到停止操作,共经历了多少时间? 【答案】 (1)将材料加热时的关系式为:y=9x+
6、15(0x5),停止加热进行操作时的关系式为y=(x>5);(2)20分钟 (四)总结反思,拓展升华 1学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理 2能用函数的观点分析、解决实际问题,让实际问题中的量的关系在数学模型中相互联系,并得到解决 (五)课堂跟踪反馈 夯实基础 1A、B两城市相距720千米,一列火车从A城去B城 (1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系是 v= (2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时 2有一面积为60的梯形,其上底长是下底长的,若下底长
7、为x,高为y,则y与x的函数关系是 y= 3(2005年中考·长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为 (A) 4下列各问题中,两个变量之间的关系不是反比例函数的是(C) A小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系 B菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系 C一个玻璃容器的体积为30L时,所盛液体的质量m与所盛液体的体积V之间的关系 D压力为600N时,压强p与受力面积S之间的关系 提升能力5面积为2的ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是(C) 开放
8、探究 6为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒已知,药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示)现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题: (1)药物燃烧时y关于x的函数关系式为: y=x ,自变量的取值范围是: 0<x<8 ;药物燃烧后y与x的函数关系式为: y= ; (2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过 30 分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量
9、不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】 有效,因为燃烧时第4分钟含药量开始高于3毫克,当到第16分钟含药量开始低于3毫克,这样含药量不低于3毫克的时间共有16-4=12分钟,故有效第2课时 (一)创设情境,导入新课 公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡也可这样描述:阻力×阻力臂动力×动力臂 为此,他留下一句名言:给我一个支点,我可以撬动地球! (二)合作交流,解读探究 问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别是1200N和
10、0.5m (1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,撬动石头至少要多大的力? (2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少? 【分析】 (1)由杠杆定律有FL=1200×0.5,即F=,当L=1.5时,F=400 (2)由(1)及题意,当F=×400=200时,L=3(m), 要加长3-1.5=1.5(m) 思考 你能由此题,利用反比例函数知识解释:为什么使用撬棍时,动力臂越长越省力? 联想 物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2 ,也可写为P=
11、 (三)应用迁移,巩固提高 例1在某一电路中,电源电压U保持不变,电流I(A)与电阻R()之间的函数关系如图所示 (1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R的取值范围是什么? 【分析】 由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系 解:(1)设,根据题目条件知, 当I=6时,R=6,所以, 所以K=36,所以I与R的关系式为:I= (2)电流不超过3A,即I=12,所以R3() 注意 因为R>0,所以由12,可得R 例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例
12、函数,其图象如图所示(千帕是一种压强单位) (1)写出这个函数的解析式; (2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,气球的体积应不小于多少? 【分析】 在此题中,求出函数解析式是关键 解:设函数的解析式为P=,把点A(1.5,64)的坐标代入,得k=96,所以所求的解析式为P=; (2)V=0.8m3时,P=120(千帕); (3)由题意P144(千帕),所以144,所以V=(m3)即气体的体积应不小于m3 备选例题 1(2005年中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I= (
13、1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是_伏2(2005年中考·扬州)已知力F对一个物体作的功是15焦,则力F与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是( ) 【答案】 1(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2B (四)总结反思,拓展升华 1把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系 2利用构建好的数学模型、函数的思想解决这类问题 3注意学科之间知识的渗透 (五)课堂跟踪反馈 夯实基础 1在一定的范围内,某种物品的需求量与供应量成反比例现已知当需求量为5
14、00吨时,市场供应量为10 000吨,试求当市场供应量为16 000吨时的需求量是 312.5吨 2某电厂有5 000吨电煤 (1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)之间的函数关系是 y= ; (2)若平均每天用煤200吨,这批电煤能用是 25 天; (3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是 20 天 提升能力 3一种电器的使用寿命n(月)与平均每天使用时间t(小时)成反比例,其关系如图所示 (1)求使用寿命n(月)与平均每天使用时间t(小时)之间的函数关系式是 n= ;(2)当t=5小时时,电器的使用寿命是 96(月
15、) 4某人用50N的恒定压力用气筒给车胎打气 (1)打气所产生的压强P(帕)与受力面积S(米2)之间的函数关系是: P= (2)若受力面积是100cm2,则产生的压强是 5 000P ; (3)你能根据这一知识解释:为什么刀刃越锋利,刀具就越好用吗?为什么坦克的轮子上安装又宽又长的履带呢? 【答案】 接触面积越小,压强越大,故刀具越好用,反之可解释坦克装履带现象 开放探究 5一封闭电路中,当电压是6V时,回答下列问题: (1)写出电路中的电流I(A)与电阻R()之间的函数关系式是 I= (2)画出该函数的图象 【答案】 略 (3)如果一个用电器的电阻是5,其最大允许通过的电流为1A,那么只把这
16、个用电器接在这个封闭电路中,会不会烧坏?试通过计算说明理由 【答案】 可能烧坏 6如图所示是某个函数图象的一部分,根据图象回答下列问题:(1)这个函数图象所反映的两个变量之间是怎样的函数关系? 【答案】 反比例函数 (2)请你根据所给出的图象,举出一个合乎情理且符合图象所给出的情形的实际例子 【答案】 如:电压一定时电流强度与电阻;路程一定时,速度与时间之间等 (3)写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围 【答案】 注意自变量的范围在16之间 (4)说出图象中A点在你所举例子中的实际意义 【答案】 根据所举的例子,当自变量为2时,函数值为3即可 资料链接数学中的转折点
17、在古希腊,人们十分重视几何学的研究,开始是测量土地的需要几何学这个名词在希腊文中就是“量地”的意思,后来发展成一门独立学科,被誉为“理智的财富”当时一个人如果不懂得几何学,就不能认为是有学问的人哲学家柏拉图甚至说:“上帝也常常以几何学家自居”但是当时的希腊对代数学的研究却很忽视然后我们中国,还有阿拉伯和印度则与此相反,代数学有了高度发展,几何学却不很重视以上两种偏向都影响了数学的进步到了17世纪,法国杰出的数学家笛卡儿分析了它们各自的缺陷后说:“我想应当去寻求另外一种包含这两门科学的好处而没有它们特点的方法”他真的找到了这种方法,就是代数学和几何学的统一解析几何学,把形和数联系了起来笛卡儿发现
18、,代数方法和几何方法可以通过坐标系联系起来他的基本思想是:平面上点的坐标观念和把带两个变数的任意代数方法看成平面上的一条曲线的观念 没有坐标系就没有解析几何,而坐标系的原始概念在古代航海、测量以至下棋中就产生了另外,笛卡儿的坐标系统和方法当时并不是很完备的,后人又不断予以发展,才形成了今天的解析几何学当然必须承认,笛卡儿所开创的解析几何方法,为解析几何学的建立和发展作出了巨大贡献 解析几何方法建立后,它立即发挥了巨大的作用,主要是使变量进入了数学,引起了数学的深刻革命可以这样说,没有解析几何方法,微分法和积分法的建立是不可想象的,而这三门学科的发展,最后改变了整个数学的面貌 恩格斯指出,数学中
19、的转折点是笛卡儿的变数有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立即产生 笛卡儿,毫无疑问是世界上最伟大的数学家之一课 题反比例函数课时序数3备课时间2006/2/7授课时间主备人教学目标1.综合运用一次函数和反比例函数的知识解决有关问题; 2.借助一次函数和反比例函数的图象解决某些简单的实际问题教学重点1.进一步探求一次函数和反比例函数的性质,感受用待定系数法求函数解析式的方法;2.通过培养学生看图(象)、识图(象)、读图(象)能力、体会用“数、形”结合思想解答函数题教学难点教 学 过 程一、创设情境已知正比例函数yax和反比例函数的图象相交于点(1,2),求两函数解析式分析 根据题意可作出图象点(1,2)在正比例函数和反比例函数图象上,把点(1,2)代入正比例函数和反比例函数的解析式中,求出a和b解 因为点(1,2)在正比例函数和反比例函数图象上,把x1,y2分别代入yax和中,得2a,b2所以正比例函数解析式为y2x反比例函数解析式为二、探究归纳 综合运用一次函数和反比例函数的知识解题,一般先根据题意画出图象,借助图象和题目中提供的信息解题 三、实践应用例1 已知直线yxb经过点A(3,0),并与双曲线的交点为B(2,m)和C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《Unit 1 Hello!》(教学设计)-2024-2025学年新交际英语(2024)英语一年级上册
- 云南2025年上半年云南省市场监督管理局所属事业单位招聘14人笔试历年参考题库附带答案详解
- Module 9 Unit 2 What does he do in summer(教学设计)-2024-2025学年外研版(一起)英语二年级上册
- 低空经济产业园项目可行性研究报告(范文参考)
- 乌兰察布2024年内蒙古乌兰察布市教育局所属事业单位选调3人笔试历年参考题库附带答案详解
- 二零二五简单店面装修合同书
- 专职教师聘用合同书范例二零二五年
- 中山广东中山市五桂山中心幼儿园招聘临聘教师笔试历年参考题库附带答案详解
- 有关股东借款合同范文二零二五年
- 二零二五版抵账协议范例
- 政务服务窗口培训课件
- 2025年湖南湘潭高新集团有限公司招聘笔试参考题库含答案解析
- 2024年02月福建2024年兴业银行福州分行金融科技人才招考笔试历年参考题库附带答案详解
- 压力容器生产单位质量安全总监、安全员考试题含答案
- 住宅小区绿化苗木种植协议
- MPE720软件指令基础
- 《3-6岁儿童学习与发展指南》艺术领域 -5-6岁
- 液压知识培训课件
- 冷链物流建设施工方案
- 《消防安全操作规程》
- 中考体育培训课件
评论
0/150
提交评论