BS模型 详细推导_第1页
BS模型 详细推导_第2页
BS模型 详细推导_第3页
BS模型 详细推导_第4页
BS模型 详细推导_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、嘻嘻过渡页 TRANSITION PAGE Chapter.1前奏-背景介绍“一切数学公式模型,都是人类发明出来,并为人类服务的。它们与人类最大的区别一切数学公式模型,都是人类发明出来,并为人类服务的。它们与人类最大的区别就是没有感情,特别是恐惧和贪婪。公式不会看到金发碧眼和黄金白银就亢奋发狂,也就是没有感情,特别是恐惧和贪婪。公式不会看到金发碧眼和黄金白银就亢奋发狂,也不会面对枪林弹雨和不会面对枪林弹雨和20122012而瘫软发抖,即使对一个最出色的交易员来说,这也是难于登而瘫软发抖,即使对一个最出色的交易员来说,这也是难于登天的品质。天的品质。” 华尔街的猴子华尔街的猴子 安德鲁安德鲁贝宁

2、森贝宁森 目前国际上的期权定价方法五花八门,主流的主要有四种:Black-Scholes方法(简称B-S)、二叉树定价法、蒙特卡罗模拟法以及有保值参数和杠杆效应的解析表达式等等。其中Black-Scholes方法是这里面唯一的解析方法,而其余三种都是数值法。期权定价现状B-S是两位经济学家BLACK、SCHOLES名字的缩写,为了纪念他们发现该模型而用他们的名字命名。 在二叉树的期权定价模型型中,如果标的证券期末价格的可能性无限增多时,其价格的树状结构将无限延伸,从每个结点变化到下一个结点(上涨或下跌)的时间将不断缩短,如果价格随着时间周期的缩短,其调整的幅度也逐渐缩小的话,在极限的情况下,二

3、叉树模型对欧式权证的定价就演变为关于价权证定价理论的经典模型:B-S模型。B-S模型与二叉树模型的关系It is well known that the binomial model converges to the Black-Scholes model when thenumber of time periods increases to infinity and the length of each time period is infinitesimallyshort. This proof was provided in Cox , Ross and Rubinstein(1979)

4、.BSM模型之前大多数的期权定价都是用期权预期收益的贴现值表示;然而期权期望收益依赖于未来股票价格的概率分布,期望收益的贴现值依赖于贴现率 BSM模型之所以称之为现代期权定价理论的基础,是因为该模型对于期权的定价避免了对未来股票价格的概率分布和投资者风险偏好的依赖原理:构建一个投资策略组合,买入一种股票的同时,卖出一份一定份额的改股票的看涨期权,可以构造一个无风险的投资组合,即投资组合的收益完全独立于股票价格的变化在资本市场均衡条件下,根据资本资产定价模型,这种投资组合的收益应等于短期利率。因此,期权收益可以用标的股票和无风险资本构造的投资组合来复制,在无套利机会存在的情况下,期权价格等于购买

5、投资组合的成本,即期权价格依赖于股票价格的波动量、无风险利率、期权到期时间、敲定价格、股票市价Chapter.2配乐-必备知识布朗运动(基本维基过程) 配乐-必备知识伊藤过程& 伊藤引理(IT0定理) 泰勒展开股票价格运动过程股票价格自然对数变化过程200001()()()()2!GxxGxGxxGxx ()(1)10011()(),!(1)!nnnnGxxGxxxnn00()()GGxxGxxdGGGxxdxdGdGdxdx泰勒定理:一元函数情形:记:略去的高阶无穷小项,则有:000000(,)(,)()(,)Gxx yyGxyxy Gxyxy23000011()(,)()(,)2!

6、3!xyGxyxyGxyxyxy001()(,)!nxyGxynxy1001()(,),(1)!nxyGxx yynxyxy()GGGxy GGxGyxyxyxyxyGGdGdxdyxy二元函数情形:略去的高阶无穷小项,则有或布朗运动(基本维基过程) 标准布朗运动设代表一个小的时间间隔长度, 代表变量z在时间 内的变化,遵循标准布朗运动的 具有两种特征:特征1: 和 的关系满足(6.1): (6.1)其中, 代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值。tzzt z特征2:对于任何两个不同时间间隔, 和 的值相互独立。 考察变量z在一段较长时间T中的变化情形,我们

7、可得 (6.2)当0时 ,我们就可以得到极限的标准布朗运动: (6.3)tzTzNii1) 0()(dtdzt z先引入两个概念:漂移率和方差率。标准布朗运动的漂移率为0,方差率为1.0。 我们令漂移率的期望值为a,方差率的期望值为b2,就可得到变量x 的普通布朗运动: b是标准差 (6.4)其中,a和b均为常数,dz 遵循标准布朗运动。 普通布朗运动 bdzadtdx普通的布朗运动随时间间隔的增加,需要加上一个漂移项,表示离开起始位置的程度(常数比率),而其运动是正态规律运动。总体是一个叠加运动 普通布朗运动假定漂移率和方差率为常数,若把变量x的漂移率和方差率当作变量x和时间t的函数,我们可

8、以从公式(6.4)得到伊藤过程(Ito Process): (6.5) 其中,dz 是一个标准布朗运动,a、b是变量x和t的函数,变量x的漂移率为a,方差率为b2。 伊藤过程 dztxbdttxadx),(),(漂移非常数,正态规律项非常数,都是与时间和其目前位置有关,更加复杂的随机过程证券价格的变化过程可以用漂移率为S 、方差率为 的伊藤过程来表示: (6.6) SdzSdtdS22SdzdtSdS表示未来时间间隔后的证券价格增量变化是符合漂移和方差率只和目前价格有关系(线性关系)的伊藤随机过程(即普通布朗运动的升级版)。表示未来价格变化率符合普通布朗运动,(描述运动偏离标注布朗运动的漂移率

9、和方差率项已变为常数而非与时间和目前值有关系的函数)股票价格的变化过程两边同除以S得:从(6.6)可知,在短时间后,证券价格比率的变化值为:可见, 也具有正态分布特征 (6.7)ttSS),(ttSS 前三个是常数或者函数值,最后一个是个标准正态随机变量,整个式子是某种正态随机变量。只不过这里符合的正态分布的均值和方差是与时间间隔由关系的值而已。若变量x遵循伊藤过程,则变量x和t的函数G将遵循如下过程: (6.8)由于 (6.9)根据伊藤引理,衍生证券的价格G应遵循如下过程: (6.10)SdzSdtdS22221()2ffffdfSSdtSdzStSS伊藤引理2221()2ffffdfab

10、dtbdzxtxx伊藤引理的证明(根据二元函数的泰勒展开、伊藤过程 、标准布朗过程 证明可得)二元函数的泰勒展开式为由前述由此可推导222222211.22ffffffStSS ttSSSx tt SStSt 2222SStt 即 将变成不再是随机变量。而 ,则有 ,那么 。所以有 因为 服从标准正态分布,有 和 ,由此可以推导 。如果我们求 的方差,有 当 时, 所以,当 时, 是高阶无穷小量。这意味着,210t1Var22222VarttEE0E2Vart21E20Vart0t 2tdt222dSS dt2t2t21E再把 代入,就有将这个结果代入上面泰勒展开式,略去二阶以上(包括二阶)的

11、高阶小量,就得到伊藤引理 得证222212fffdfdSdtS dtSSSSdzSdtdS2221()2ffffdfab dtbdzxtxx令 , 由于代入式(6.10): (6.11)证券价格对数G遵循普通布朗运动,且: 0,1,1222tGSSGSSGSGlndzdtdG)2(2),)(lnln22tTtTSST这里的绝妙的对数变换是布莱克斯科尔斯微分方程的偏微分项全部消除变为简单的服从正态分布的方程。同时也说明之前的假设是要成立的:证券价格的对数服从正态分布或证券价格服从对数分布。证券价格的对数变化量服从正态分布,从而知晓s 、t 的分布函数证券价格自然对数变化过程 Chapter.3奏

12、乐-模型推导微分方程风险中性定价其中:C期权初始合理价格;X期权交割价格;S所交易金融资产现价;T期权有效期;r连续复利计无风险利率;年度化方差(波动率);N()正态分布变量的累积概率分布函数,(标准正态分布 =0)。)()(21dNXedSNcrTTdTTrLSdTTrLSd12221)2/()/ln()2/()/ln(B-S定价公式基本假设(a) 原生资产价格演化遵循几何Brown运动 (1) (b)无风险利率r是常数且对所有到期日都相同,(c)原生资产不支付股息,(d)不支付交易费和税收,(e)不存在套利机会,(f)证券交易是连续的。SdzSdtdS变量z是一个随机变量,时间长度为 t,

13、要使z服从标准布朗运动 是依赖于S的衍生证券的价格 由ITO定理: (1)和(2)式离散形式:,ffS tttztSSSdzSfdtSSftfSSfdf)21(2222zSSftSSftfSSff)21(2222两式遵循相同的维纳过程,即 相同。所以可以选择某种股票和衍证券的组合来消除维纳过程。)(tZ(2)(3)(4)其中,方程(3)和方程(4)遵循的维纳过程相同,即 相同。所以可以选择某种股票和衍生证券的组合来消除维纳过程。假设某投资者卖出一份衍生证券,同时买入 份股票 ztfSrt 222212ffStSS ffSS ffSS 则该证券组合的价值为时间后,该证券组合的价值变化:将方程(3

14、)和方程(4)代入上式,得因为这个方程不含有 ,经过 时间后证券组合必定没有风险。因此,当 无限短时,该证券组合的瞬时收益率一定 与其他短期无风险证券的收益率相同。否则的话,将存在无风险的套利机会 。所以 zttt其中 为无风险利率(6)(5)r 确定期权的价值 ,就是要在区域 上 求解如下定解问题: 边界条件222212fffSrSrftSS,fSt: 0, 0StT m ax (, 0 )m ax (, 0 )TTSXfXS欧式看涨欧式看跌222212fffStrfStSS222212fffSrSrftSS将方程(5)、(6)代入上式可得这就是著名的Black-Schole微分方程化简得

15、前述的Black-Schole微分方程不包含任何投资者的风险偏好影响的变量,从而它独立于风险偏好。因此,我们可以在对期权进行定价时使用任何一种风险偏好。为了简便分析,可以做一个非常简单的假设:所有的投资者都是风险中性的,这样所有证券的预期收益率都是无风险利率 ,且其衍生证券的目前价值可以用其期末价值的期望值以无风险利率 来贴现得到。而在此前提下的定价便称为风险中性定价。rB-S风险中性定价计算公式根据风险中性定价理论,欧式股票看涨期权的期望值为: 0),max(XSET其中 表示风险中性定价下的期望值, 为期权到期时间。 为时刻股票价格。因此,看涨期权的价格 是这个期望值以无风险利率 的贴现结

16、果:CTSTErmax(),0r TtTCeESX由前面得知,股票价格呈对数正态分布,即),)(lnln22tTtTSST令当前时刻t=0则:TTS1201,2ln20lnln,2TSSTT记那么11ln (,)TS 即ST服从对数正态分布。设ST的概率密度为 ,则0, 00,21)(21212)(ln1yyeyygyST()TSgy 2121(ln)211max(),0()()()2TyTSXXESXyXgy dyyXedyy )()5 . 0()ln()(ln121120121122ln2)(1211211212211dNSeTTrXSNeSXNedteerTrTXtdteXdteeXtXttln2)(1ln2)(12121212122TTrXSd)5 . 0()ln(21 令lny=t,上式= 右边第一项= 代入化简 2111tut化为标准正态分布令 第二项= )()5.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论