版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、充分条件与必要条件 例题解析 能力素质 例1 已知p:x1,x2是方程x25x60的两根,q:x1x25,则p是q的 A充分但不必要条件B必要但不充分条件C充要条件D既不充分也不必要条件分析 利用韦达定理转换解 x1,x2是方程x25x60的两根,x1,x2的值分别为1,6,x1x2165因此选A说明:判断命题为假命题可以通过举反例例2 p是q的充要条件的是 Ap:3x25,q:2x35Bp:a2,b2,q:abCp:四边形的两条对角线互相垂直平分,q:四边形是正方形Dp:a0,q:关于x的方程ax1有惟一解分析 逐个验证命题是否等价解 对Ap:x1,q:x1,所以,p是q的既不充分
2、也不必要条件;对Bpq但qp,p是q的充分非必要条件;对Cpq且qp,p是q的必要非充分条件;说明:当a0时,ax0有无数个解例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的 A充分条件B必要条件C充要条件D既不充分也不必要条件分析 通过B、C作为桥梁联系A、D解 A是B的充分条件,ABD是C成立的必要条件,CD由得AC由得ADD是A成立的必要条件选B说明:要注意利用推出符号的传递性例4 设命题甲为:0x5,命题乙为|x2|3,那么甲是乙的 A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件分析 先解不等式再判定解 解不等式|x2|3得1x
3、50x51x5,但1x50x5甲是乙的充分不必要条件,选A说明:一般情况下,如果条件甲为xA,条件乙为xB当且仅当AB时,甲为乙的充要条件例5 设A、B、C三个集合,为使A(BC),条件AB是 A充分条件B必要条件C充要条件D既不充分也不必要条件分析 可以结合图形分析请同学们自己画图A(BC)但是,当BN,CR,AZ时,显然A(BC),但AB不成立,综上所述:“AB”“A(BC)”,而“A(BC)”“AB”即“AB”是“A(BC)”的充分条件(不必要)选A说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况例6 给出下列各组条件:(1)p:ab0,q:a2b20;(2)p:xy0,q:
4、|x|y|xy|;(3)p:m0,q:方程x2xm0有实根;(4)p:|x1|2,q:x1其中p是q的充要条件的有 A1组B2组C3组D4组分析 使用方程理论和不等式性质解 (1)p是q的必要条件(2)p是q充要条件(3)p是q的充分条件(4)p是q的必要条件选A说明:ab0指其中至少有一个为零,而a2b20指两个都为零分析 将前后两个不等式组分别作等价变形,观察两者之间的关系 点击思维 例8 已知真命题“abcd”和“abef”,则“cd”是“ef”的_条件分析 abcd(原命题),cdab(逆否命题)而abef,cdef即cd是ef的充分条件答 填写“充分”说明:充分利用原命题与其逆否命题
5、的等价性是常见的思想方法例9 ax22x10至少有一个负实根的充要条件是 A0a1Ba1Ca1D0a1或a0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之当a1时,方程有负根x1,当a0时,x当a0时综上所述a1即ax22x10至少有一个负实根的充要条件是a1说明:特殊值法、排除法都是解选择题的好方法例10 已知p、q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么s,r,p分别是q的什么条件?分析 画出关系图121,观察求解解 s是q的充要条件;(srq,qs)r是q的充要条件;(rq,qsr)p是q的必要条件;(qsrp)说明:图可以画的随意一些,关键要
6、体现各个条件、命题之间的逻辑关系例11 关于x的不等式分析 化简A和B,结合数轴,构造不等式(组),求出a解 Ax|2axa21,Bx|(x2)x(3a1)0Bx|2x3a1Bx|3a1x2说明:集合的包含关系、命题的真假往往与解不等式密切相关在解题时要理清思路,表达准确,推理无误 学科渗透要条件?分析 将充要条件和不等式同解变形相联系说明:分类讨论要做到不重不漏例13 设,是方程x2axb0的两个实根,试分析a2且b1是两根,均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需qp上述讨论可知:a2,b1是1,1的必要但不充分条件说明:本题中的讨论内容在二次方程的根的分布理论中常被使用 高考巡礼 例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么 A丙是甲的充分条件,但不是甲的必要条件B丙是甲的必要条件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪科版九年级数学上册期末复习考点 第23章 解直角三角形知识归纳与题型突破(12类题型清单)
- 2024-2030年中国型钢产业趋势预测及投资产量分析报告
- 2024-2030年中国地铁建设行业前景规划及投资经营模式分析报告
- 2024年智能软件使用与数据保密协议2篇
- 2024年特许经营合同(加盟)
- 梅河口康美职业技术学院《运动伤害事故处理与急救》2023-2024学年第一学期期末试卷
- 2024年“通办”第二批事项指导目录实施合同范本3篇
- 2024年二手手机买卖与市场推广合作协议3篇
- 满洲里俄语职业学院《云计算原理及应用》2023-2024学年第一学期期末试卷
- 影视动画资源库相关专业介绍
- 离散数学(下)智慧树知到课后章节答案2023年下桂林电子科技大学
- 咖啡因提取的综合性实验教学
- GONE理论视角下宜华生活财务舞弊案例分析
- 初中语文默写竞赛方案
- 2023电力建设工程监理月报范本
- 汽车空调检测与维修-说课课件
- 氨水浓度密度对照表
- 白雪歌送武判官归京公开课一等奖课件省课获奖课件
- 园林植物栽培与环境
- 小型双级液压举升器设计
- 9月支部委员会会议记录
评论
0/150
提交评论