


付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解决抽象函数问题的常用方法一、赋值法观察与分析抽象函数问题中的已知与未知的关系,巧妙地对一般变量赋予特殊值,或把函数赋予特殊函数等,从而达到解决问题的目的,这是常用的方法 1、赋特殊值 例1. 设函数,对任意实数、满足。(1)求证:;(2)求证:为偶函数;(3)已知在上为增函数,解不等式。证明:(1)令,得,故;令,得,故。(2)令,得;令,得,所以,即为偶函数。(3),即,或,由(2)和在上为增函数,可得,解得且。 2、赋特殊函数 例2. 对于任意的函数,在同一个直角坐标系中,函数与函数的图像恒( )(A)关于x轴对称(B)关于直线对称(C)关于直线对称(D)关于y轴对称解:取函数,则,这两
2、个函数是同一个函数,它们的对称轴为,故选(B)。二、递推法根据题目中所给出的或推出的函数方程,运用递推的思想,逐步递推,达到目的。 例3. 已知是定义在R上的函数,且对于任意都有,若_。解:由,和,从而由题设有,。故。即,所以是以1为周期的周期函数。又,所以。三、换元法根据题目结构特点及欲证的结论,将题中的某些量替换成所需的量(注意:应使函数的定义域不发生改变,有时还需要作几次相应的替换),得到一个或几个方程,然后设法从中求其解。 例4. 若函数的定义域为,求函数的定义域。解:设,因为的定义域为,所以,则的定义域是。又令得即的定义域是。四、比较,转化法有些抽象函数与函数的单调性、奇偶性、对称性
3、等性质联系密切,求解这类问题应充分理解题意,综合运用函数知识和函数思想,将其转化到熟悉的问题中来。 例5. 已知定义在R上的函数满足:(1)对于任意都有;(2)当时,且。求在上的最大值和最小值。解:任取,由条件(1)得,所以,因为,由条件(2)得,所以,所以在上单调递减。在(1)中令,得,所以,再令,得,所以,从而为奇函数,因此,上的最大值为,最小值为。 例6. 设函数的定义域为R,对于任意实数m、n,总有,且。(1)求的值;(2)判断在R上的单调性,并证明你的结论;(3)设,a、b、c,a、b不同时为零,若,确定实数a、b、c三者之间的关系。分析:根据所给条件,易联想到符合题设的指数函数,从而问题(1)、(2)的求解方向就十分明确了,当然这只是猜测,还需要严格证明。解:(1)因为对于任意实数m、n总有,所以令,得,又时,故,从而有。(2)首先注意到,当时,从而,设,则,即,故是R上单调递减函数。(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村地区农产品供应协议
- 商业活动策划与执行合同协议条款说明
- 广东省揭阳产业园实验中学2024-2025学年八年级物理第一学期期末学业水平测试模拟试题含解析
- 2025届山东省聊城临清市九上物理期末达标测试试题含解析
- 从小说中窥探社会百态:大学文学小说研究课程教案
- 生活服务平台升级合作协议
- 校园环境绿化协议书
- 畜牧业生态养殖模式实践协议
- 高二物理实验项目组:力学实验设计与研究教案
- 新型环保材料采购供应协议
- 牙克石市矿产资源开发环境承载力评价报告
- 2025年全国统一高考语文试卷(全国一卷)含答案
- 转让多台渣土车协议书
- 企业多元化经营策略对其偿债能力的影响研究
- 医疗AI的透明度与可解释性的伦理及法规要求
- 《南京美食》课件
- 恋爱协议书范文模板
- 2025工程建设项目多测合一成果报告书范本
- 长期照护服务体系构建-深度研究
- 家庭教育指导计划表
- 2025年家用呼吸机行业调研分析报告
评论
0/150
提交评论