下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平移型“将军饮马”问题解法大全如下图,大家都熟悉求两条线段和最短的“将军饮马”模型,就是通过对称把同侧两定点转化为异侧两定点,再利用两点之间线段最短,找到我们要得的动点,进而求出最短距离。在直线l上找一动点P,使得PA+PB之和最短,就是我们熟知的“将军饮马”模型,即(“两定一动型”-两个定点+一个动点)。如果本题拓展为在直线l上找两个动点P、Q(PQ两动点间距离为定值),使得AP+PQ+BQ的距离之和最短,又该如何处理呢?(“两动一定型”)法一:先对称后平移作定点A关于动点所在直线(河)的对称点A,将点A沿直线平移PQ的长度得A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个
2、长度得点P,即此时AP+PQ+BQ最短.思路:作对称(同侧变异侧)-对称点平移定长线段(“一定两动”化“两定一动”)-连接两定点-动点反向平移定长线段-连接所得点.法二:先平移后对称将点A沿直线平移PQ的长度得A,作定点A关于动点所在直线(河)的对称点A”,连接A”B,则交直线(河)于点Q,将点Q沿直线反向平移PQ个长度得点P,即此时AP+PQ+BQ最短.思路:定点平移定长线段(“一定两动”化“两定一动”)-作对称(同侧变异侧)-连接两定点-动点反向平移定长线段-连接所得点.作图模型:对称+平移+连接+反向平移+连接简析:典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转
3、化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,连接原定点和对称点即可得最短距离.(思路:定点沿河平移定长,作出对称点,连接异侧两定点)简析:典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”).具体思路均是构造定点关于动点所在直线(河)的对称点.简析:非典型的“平移型将军饮马问题”(要将“一定两动”转变为“两定一动”问题即转化为“饮马问题”,但
4、本题2动点不同在河上是难点).具体思路均是构造定点关于动点所在直线(河)的对称点.反思:“平移型将军饮马”问题,需通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.通过平移将一定点变为两定点,再将同侧定点通过对称转变为异侧定点,将动点平移到异侧定点连线上即可得最短距离.(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)反思:非典型的“平移型将军饮马”问题,需要我们有化动为定思想,将某动点看作定点,再通过平移定线段转化为“将军饮马”问题来解决.具体思路可“先对称后平移”,也可“先平移后对称”.(思路:定点沿河平移定长,作出对称点,连接异侧两定点,平移动点至定点连线上)本质为转化思想:化同侧为异侧(对称变换)平移定距离(平移变换)化折线为直线(两点之间线段最短) 总结:“平移型将军饮马”又可细分为以下4种类型:典型的“平移型将军饮马”(一定两动型-动点均在直线“河”上)作对称+再平移(化为“两定一动”)+去连接+反平移非典型的“平移型将军饮马”(一定两动型-动点只有1点在直线“河”上)作对称+再平移+去连接+另一动点反平移至直线非典型的“平移型将军饮马”(三动点型)假定某动为定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硫酸铁在环境保护中的应用考核试卷
- 水箱水位课程设计
- 2024年度茶叶代购服务合同(名优茶叶)3篇
- 2024制式租赁合同-新型办公家具租赁协议3篇
- 淀粉行业的企业文化与员工激励机制考核试卷
- 温控课程设计小组
- 杭州通风空调课程设计
- 《梁山武术文化研究》
- 《永磁同步电机无速度传感器控制的研究策略》
- 《天龙山北朝石窟艺术研究》
- 超市外卖运营技巧培训方案
- 埋件检查及后补埋件方案
- 公司股权交接协议书样本
- 北京市石景山区2023-2024学年八年级上学期期末历史试题
- (人教版新目标)八年级英语上册全册各单元知识点期末总复习讲解教学课件
- 第12课 第二框 健全社会保障
- 工程结算课件
- 常见症状的规范诊疗之一:胸痛课件
- 工程地质调查规范
- CNAS-CL02-A001:2023 医学实验室质量和能力认可准则的应用要求
- 部编小语一下三单元(《小公鸡和小鸭子》《树和喜鹊》《怎么都快乐》)大单元学习任务群教学设计
评论
0/150
提交评论