二次函数的最值教案(共4页)_第1页
二次函数的最值教案(共4页)_第2页
二次函数的最值教案(共4页)_第3页
二次函数的最值教案(共4页)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上二次函数最值的应用教案 丰林中学 任志库一、教学目标(一)知识与技能1、会通过配方或公式求出二次函数的最大或最小值;2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值;(二)  过程与方法通过实例的学习,培养学生尝试解决实际问题,逐步提高分析问题、解决问题的能力,培养学生用数学的意识。(三)  情感态度价值观1、使学生经历克服困难的活动,在数学学习活动中获得成功的体验,建立学好数学的信心;2、通过对解决问题过程的反思,获得解决问题的经验和获得新的思想知识的方法,从而体会熟悉活动中多动脑筋、独立思考、合

2、作交流的重要性。四、教学重点与难点1、教学重点:实际问题中的二次函数最值问题。2、教学难点:自变量有范围限制的最值问题。二、课堂教学设计过程(一)复习导入 以旧带新1、二次函数的一般形式是什么?并说出它的开口方向、对称轴、顶点坐标。2、二次函数y=x²+4x3的图象顶点坐标是( )    当x     时,y有最    值,是_。3、二次函数y=x²+2x-4的图象顶点坐标是 ( ) 当x      时,y有最

3、60;    值,是_。分析:由于函数的自变量的取值范围是全体实数,所以只要确定他们的图像有最高点或最低点,就可以确定函数有最大值或最小值。设计意图:复习与本节课有关的知识,可充分调动学生思维的积极性,又为新课做好准备。 (二)创设情境,导入新课1、试一试:例1. 有长为30米得篱笆,利用一面墙(墙的长度不超过10米),围成中间隔有一道篱笆(平行于BC)的矩形花圃。设花圃的一边BC为x米,面积为y平方米。(1)求y与x的函数关系式;(2)能否使所围矩形花圃的面积最大?如果能,求出最大的面积;如果不能,请说明理由。设计意图:让学生从已学的用配方法或公式法求二次函数的最值,在教

4、学时,可让学生充分讨论、发言,培养学生的合作探究精神,可让学生感受到成功的喜悦。2。直击中考:例2.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在一个月内获得最大利润?分析:解决实际问题时,应先分析问题中的数量关系,列出函数关系式,求出自变量的取值范围,结合图像和二次函数的性质求w的最大值。(四)课堂练习,见导学案(五)课堂小结,回顾提升     本节课我们研究了二次函数的最值问题,主要分两种类型:(1)如果自变量的取值范围是全体实数,那么函数在顶点处取最值;(2)如果自变量的取值范围不是全体实数,要根据具体范围加以分析,结合函数图像的同时利用函数的增减性分析题意,求出函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论