版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.3 3.3 垂径定理(垂径定理(1 1)创设情境创设情境,引入新课引入新课复习提问复习提问:()正三角形是轴对称性图形吗?()正三角形是轴对称性图形吗?()什么是轴对称图形()什么是轴对称图形()圆是否为轴对称图形?如果是,它的()圆是否为轴对称图形?如果是,它的对称轴是什么?你能找到多少条对称轴?对称轴是什么?你能找到多少条对称轴?如果一个图形沿着一条直线对折,两侧的图形能如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。完全重合,这个图形就是轴对称图形。有几条对称轴?有几条对称轴?是是 强调:强调:判断:任意一条直径都是圆的对称轴(判断:任意一条直径都是圆的对
2、称轴( )X(1)圆的对称轴是直线,不能说每一条直径都是圆的对称轴)圆的对称轴是直线,不能说每一条直径都是圆的对称轴.(2)圆的对称轴有无数条)圆的对称轴有无数条.C CD D合作交流合作交流,探究新知探究新知一自主探究一自主探究结论:结论:. .在刚才操作的基础上在刚才操作的基础上, ,再作一条和直径再作一条和直径CDCD垂直的弦垂直的弦AB,ABAB,AB与与CDCD相交于点相交于点E,E,然后沿着直径然后沿着直径CDCD所在的直线把纸所在的直线把纸折叠折叠, ,你发现哪些点你发现哪些点线互相重合线互相重合? ?如果把能够重合的圆如果把能够重合的圆弧叫做弧叫做相等的圆弧相等的圆弧( (等弧
3、等弧) ), ,有有哪些圆弧相等?哪些圆弧相等?A AB BE EC CD D二合作学习二合作学习解:点解:点A与点与点B重合,重合,与重合,与重合,ACBC,ADBD.请请你用命题的形式表述你的结论你用命题的形式表述你的结论.垂直于弦的直径平分这条弦,垂直于弦的直径平分这条弦,并且平分弦所对的弧并且平分弦所对的弧A AB BE EC CD D点点A A与点与点B B重合,弧重合,弧ACAC和弧和弧BCBC重合,重合,弧弧ADAD和弧和弧BDBD重合重合.请你对上述命题写出已知,求证,并给出证明请你对上述命题写出已知,求证,并给出证明解解已知:如图,是已知:如图,是求证:求证: EA=EB,
4、AC= BC, AD=BD证明:连结,证明:连结,.的两个半圆互的两个半圆互相重合相重合.OEA=OEB=Rt,线段线段EA与与线段线段EB重合重合. EA=EB, AC= BC, AD=BD垂直于弦的直径平分这条弦,并且平分弦所对的弧垂直于弦的直径平分这条弦,并且平分弦所对的弧思考:思考:你能利用等腰你能利用等腰三角形的性质,说明三角形的性质,说明OCOC平分平分ABAB吗吗?.圆的性质(垂径定理)圆的性质(垂径定理)垂直于弦的直径平分这条弦,垂直于弦的直径平分这条弦,并且平分弦所对的弧并且平分弦所对的弧垂径定理:垂径定理:垂直于弦的直径平分这条弦,垂直于弦的直径平分这条弦,并且平分弦所对的
5、弧并且平分弦所对的弧垂径定理的几何语言叙述垂径定理的几何语言叙述:CD为直径,为直径,CDAB(或(或OCAB) EA=EB, AC=BC, AD=BD 结论结论2:A AB BC CD DE E条件条件CD为直径为直径CDABCD平分弧平分弧ADBCD平分弦平分弦ABCD平分弧平分弧A B结论结论分一条弧成相等的两条弧的点分一条弧成相等的两条弧的点, ,叫做这条叫做这条弧的中点弧的中点. .三概括性质(三概括性质(垂径定理垂径定理:垂直于弦的直:垂直于弦的直径平分这条弦,并且平分弦所对的弧)径平分这条弦,并且平分弦所对的弧).直径垂直于弦直径垂直于弦 EA=EB, AC=BC, AD=BD
6、A AB BC CD DE E直径平分弦所对的弧直径平分弦所对的弧直径平分弦直径平分弦2.分一条弧成相等的两条弧的点分一条弧成相等的两条弧的点,叫做这条叫做这条弧的中点弧的中点.例如例如,点点C是是AB的中点的中点,点点D是是ADB的中点的中点.CD为直径,为直径,CDAB(或(或OCAB)垂径定理的几何语言叙述垂径定理的几何语言叙述:(条件)(条件)(结论)(结论)EDCOABOBCADDOBCAOBACDOBAC作法:作法: 连结连结ABAB. 作作ABAB的垂直平分线的垂直平分线 CDCD,交弧,交弧ABAB于点于点E.E.点点E E就是所求弧就是所求弧ABAB的中点的中点CDABE例例
7、1 1 已知弧已知弧ABAB,如图,用直尺和圆规求作这条弧,如图,用直尺和圆规求作这条弧的中点的中点( (先介绍弧中点的概念)先介绍弧中点的概念)分析分析: :要平分要平分AB,AB,只要画垂直于弦只要画垂直于弦ABAB的直径的直径. .而这而这条直径应在弦条直径应在弦ABAB的垂直平分线上的垂直平分线上. .因此画因此画ABAB的的垂直平分线就能把垂直平分线就能把ABAB平分平分. .如图,过已知如图,过已知 O内的一点内的一点A作弦作弦,使使A是该弦是该弦的中点的中点,然后作出弦所对的两条弧的中点然后作出弦所对的两条弧的中点OABCBCBC就是所要求的弦就是所要求的弦点点D,ED,E就是所
8、要求的弦就是所要求的弦所对的两条弧的中点所对的两条弧的中点. .DEDC1088解解: :作作OCABOCAB于于C,C, 由垂径定理得由垂径定理得: :AC=BC=1/2AB=0.5AC=BC=1/2AB=0.516=8.16=8. 由勾股定理得由勾股定理得: :2222OCOBBC1086圆心到圆的一条弦的距离叫做圆心到圆的一条弦的距离叫做弦心距弦心距.例如例如, ,上图中上图中, ,OCOC的长就是弦的长就是弦ABAB的弦心距的弦心距. .想一想想一想: :排水管中水最深多少排水管中水最深多少? ?答答: :题后小结:题后小结:1作作弦心距弦心距和和半径半径是圆中是圆中常见的辅助线;常见
9、的辅助线;OABCr rd d22.2ABrd弦长2 半径(半径(r)、半弦、弦心、半弦、弦心距距(d)组成的直角三角形是研组成的直角三角形是研究与圆有关问题的主要思路,究与圆有关问题的主要思路,它们之间的关系:它们之间的关系:C CA AB BO OD D. .在直径为厘米的球形油槽内装入一些油后,截面如在直径为厘米的球形油槽内装入一些油后,截面如图所示,如果油面宽是厘米,求油槽中油的最大深度图所示,如果油面宽是厘米,求油槽中油的最大深度C CD D解:解:因为因为,过作过作于点,延长交于点,于点,延长交于点,18()2CEDECD所以厘米120102OD 又厘米26Rt ODEDE2在中,
10、OE= OD(厘米)所以油槽中油的最大深度(厘米)所以油槽中油的最大深度(厘米)连结连结 3、已知:如图,、已知:如图, O 中,中, AB为为 弦,弦,OC AB OC交交AB 于于D ,AB = 6cm ,CD = 1cm. 求求 O 的半径的半径.A AB BO OC CD D1.同心圆中,大圆的弦与小圆交于,同心圆中,大圆的弦与小圆交于,两点,判断线段与的大小关系,并说明两点,判断线段与的大小关系,并说明理由理由与相等。理由如下:与相等。理由如下:解:解:过点作过点作AB于点,于点,则,则,所以,所以,即即C CD D同心圆是指两个同心圆是指两个圆的圆心相同圆的圆心相同A AB BO OC CD DO OP P2如图,如图, O的直径为的直径为10,弦,弦AB长为长为8,M是是弦弦AB上的动点,则上的动点,则OM的长的取值范围是(的长的取值范围是( ) A3OM5 B4OM5 C3OM5 D4OM5ABOM师生共同总结:师生共同总结: 本节课主要内容本节课主要内容:(1 1)圆的轴对称性;()圆的轴对称性;(2 2)垂径定理)垂径定理2 2垂径定理的应用:垂径定理的应用:(1 1)作图;()作图;(2 2)计算和证明)计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年非全日制用工协议模板解析
- 2024网络通信设备买卖协议指导
- 2024年新款高强度围墙护栏销售协议
- 2024银行股权质押借款协议模板
- 2024年化围栏施工协议范例
- 2024年门面房使用权转租协议样式
- DB11∕T 1708-2019 施工工地扬尘视频监控和数据传输技术规范
- 2024年度酒店早餐外判协议示例
- 2024城区鼠害防治协议范本
- 2024年企业员工劳动协议条款细则
- 人工智能设计伦理智慧树知到期末考试答案章节答案2024年浙江大学
- 2024年职业院校“研学旅行”(高职组)技能大赛考试题库及答案
- (附答案)2024公需课《百县千镇万村高质量发展工程与城乡区域协调发展》试题广东公需科
- 微创冠脉搭桥手术
- 富血小板血浆(PRP)简介
- 2.2做出判断的分支第一课时教案20232024学年教科版高中信息技术必修1
- 课题开题报告会方案
- 钢管施工承包合同(完整版合同模板)
- 大学生职业生涯规划无人机林业
- 教师职业生涯发展报告
- 2024年时事新闻及点评【六篇】
评论
0/150
提交评论