二次函数全章导学案_第1页
二次函数全章导学案_第2页
二次函数全章导学案_第3页
二次函数全章导学案_第4页
二次函数全章导学案_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二十六章 二次函数 教材分析本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述现实世界变量之间关系的重要的数学模型。本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定

2、基础。本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的。本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。 教学目标1.正确理解二次函数的概念,了解函数产生的背景,在原有的函数知识的基础上

3、学习和掌握二次函数的概念和性质,能利用二次函数刻画事物的变化规律。2.理解二次函数的意义,掌握二次函数的概念、图象和性质,知道二次函数是描述客观世界变化规律的重要数学模型。3.了解二次函数与二次方程之间的关系,会利用函数图象求一些简单二次方程的近似解,了解二次函数模型及其意义,能准确、清晰、有条理地表述问题,会用二次函数知识分析问题,解决问题,使学生了解函数与方程是研究事物变化的重要工具。4.培养学生的理性思维能力,辩证思维能力,分析问题和解决问题的能力,创新意识与探究能力,数学建模能力以及数学交流能力。5.通过现代信息技术的合理应用,教师在教学中适度地使信息技术描绘函数图象,动态地变换函数图

4、象,让学生体会到信息技术是认识世界的有效手段和工具。6.要使学生体验数学的文化价值,使学生感受数学美,培养学生利用运动变化的观点观察事物,进一步树立科学的人生观,价值观和辩证唯物主义世界观。 课时安排本章教学时间约需11课时 ,具体安排如下:261 二次函数1课时二次函数的图象1课时二次函数的图象3课时二次函数的图象1课时用待定系数法求二次函数的解析式1课时262用函数观点看一元二次方程1课时263 实际问题与二次函数2课时 全章总复习1课时第一课时 26.1.1二次函数学习目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰

5、富学生的感性认识,培养学生的良好的学习习惯学习重难点:重点:二次函数的定义难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。学习过程:一,复习引入 指导预习 1.若在一个变化过程中有两个变量x和y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说y是x的 ,x叫做 。2. 形如的函数是一次函数,当时,它是 函数;形如 的函数是反比例函数。看书回答:1.什么叫二次函数?2.一般地,形如_的函数,叫做二次函数。其中x是_,a是_,b是_,c是_.2. 自主合作 探究新知 思考讨论下列问题:1用16m长的篱笆围成长方形圈养小兔,圈的面积y()与长方形的长x(m)

6、之间的函数关系式为 。2.n支球队参加比赛,每两队之间进行一场比赛写出比赛的场次数m与球队数n之间的关系式_3.用一根长为40的铁丝围成一个半径为的扇形,求扇形的面积与它的半径之间的函数关系式是 。4.观察上述函数函数关系有哪些共同之处? 。 归纳:一般地,形如 ,( )的函数为二次函数。其中是自变量,是_,b是_,c是_例1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)面积y(m2) 2x的值是否可以任意取?有限定范围吗? 3我们发现,当AB的长(x)确

7、定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 三.分层练习 变式提高 练习: (口答)下列函数中,哪些是二次函数? (1)y=5x1 (2)y=4x21 (3)y=2x33x2 (4)y=5x43x1思考:1.当a=0时,y=ax2bxc是 函数;当b=0时,y=ax2bxc是 函数;当c=0时,y=ax2bxc是 函数。2. 是二次函数,则m的值为_3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y13x2 (2)y3x22x (3)yx (x5)2 (4)y3x32x2(5)yx四.归纳提升 培养能力 1请叙述二次函

8、数的定义2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。五.达标反馈 落实目标1.若函数y(a1)x22xa21是二次函数,则( ) A.a1 B.a1 C.a1D.a12.下列函数中,是二次函数的是( ) A.yx21B.yx1C.yD.y3.下列函数中是二次函数的是( ) A.yxB. y3 (x1)2 C.y(x1)2x2 D.yx4.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s5t22t,则当t4秒时,该物体所经过的路程为 A.28米B.48米C.68米D.88米5.已知y与x2成正比例,并且当x1时,y3. 求:

9、(1)函数y与x的函数关系式;(2)当x4时,y的值;(3)当y时,x的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围.第二课时 二次函数的图象学习目标: 1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯学习重难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a

10、x2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。学习过程:一,复习引入 指导预习1,同学们可以回想一下,一次函数的性质是如何研究的?2.画一个函数图象的一般过程是 ; ; 。3.一次函数图象的形状是 ;反比例函数图象的形状是 .二.自主合作 探究新知 例1、画二次函数y=ax2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x3210123y9410149 (2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,

11、它有什么特点?1.归纳: 由图象可知二次函数的图象是一条曲线,它的形状类似于抛出物体所经过的路线,所以这条曲线叫做 线;抛物线是轴对称图形,对称轴是 ;的图象开口_; 与 的交点叫做抛物线的顶点。抛物线的顶点坐标是 ;它是抛物线的最 点(填“高”或“低”),即当x=0时,y有最 值等于0.在对称轴的左侧,图象从左往右呈 趋势,在对称轴的右侧,图象从左往右呈 趋势;即0时,随的增大而 。2.在例1图中,画出函数,的图象归纳:抛物线,的图象的形状都是 ;顶点都是_;对称轴都是_;二次项系数_0;开口都 ;顶点都是抛物线的最_点(填“高”或“低”) 三.分层练习 变式提高例2 请在同一坐标系中画出函

12、数,的图象归纳:抛物线,的的图象的形状都是 ;顶点都是_;对称轴都是_;二次项系数_0;开口都 ;顶点都是抛物线的最_点(填“高”或“低”) 归纳:抛物线的性质图象(草图)对称轴顶点开口方向有最高或最低点最值0当x_时,y有最_值,是_0当x_时,y有最_值,是_1.当0时,在对称轴的左侧,即 0时,随的增大而 ;在对称轴的右侧,即 0时随的增大而 。2当0时,越大,抛物线的开口越_;当0时, 越大,抛物线的开口越_;因此,越大,抛物线的开口越_。四.归纳提升 培养能力 谈谈你的收获?五.达标反馈 落实目标1函数的图象顶点是_,对称轴是_,开口向_,当x_时,有最_值是_2. 函数的图象顶点是

13、_,对称轴是_,开口向_,当x_时,有最_值是_3. 二次函数的图象开口向下,则m_4. 二次函数ymx有最高点,则m_5. 二次函数y(k1)x2的图象如图所示,则k的取值范围为_6若二次函数的图象过点(1,2),则的值是_7如图,抛物线 开口从小到大排列是_;(只填序号)其中关于轴对称的两条抛物线是 和 。8点A(,b)是抛物线上的一点,则b= ;过点A作x轴的平行线交抛物线另一点B的坐标是 。9如图,A、B分别为上两点,且线段ABy轴于点(0,6),若AB=6,则该抛物线的表达式为 。10. 当m= 时,抛物线开口向下11.二次函数与直线交于点P(1,b)(1)求a、b的值;(2)写出二

14、次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小第三课时二次函数的图象(一)学习目标: 1、使学生能利用描点法正确作出函数yax2b的图象。2、让学生经历二次函数yax2bxc性质探究的过程,理解二次函数yax2b的性质及它与函数yax2的关系。学习重难点:重点:会用描点法画出二次函数yax2b的图象,理解二次函数yax2b的性质,理解函数yax2b与函数yax2的相互关系。难点:正确理解二次函数yax2b的性质,理解抛物线yax2b与抛物线yax2的关系。学习过程:一.复习引入 指导预习1二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的

15、增大而_,在对称轴的右侧,y随x的增大而_,函数yax2与x_时,取最_值,其最_值是_。2.直线可以看做是由直线 得到的。练:若一个一次函数的图象是由平移得到,并且过点(-1,3),求这个函数的解析式。由此你能推测二次函数与的图象之间又有何关系吗?二.自主合作 探究新知(一)在同一直角坐标系中,画出二次函数,的图象x3210123 1列表:2描点:3连线:抛物线开口方向顶点对称轴有最高(低)点增减性根据图像填表思考:1.把抛物线向_平移_个单位,就得到抛物线;把抛物线向_平移_个单位,就得到抛物线.2 抛物线,的形状_开口大小相同。归纳:(一)抛物线特点:1.当时,开口向 ;当时,开口 ;2

16、. 顶点坐标是 ;3. 对称轴是 。(二)抛物线与形状相同,位置不同,是由 平移得到的。(填上下或左右)二次函数图象的平移规律:上 下 。(三)的正负决定开口的 ;决定开口的 ,即不变,则抛物线的形状 。因为平移没有改变抛物线的开口方向和形状,所以平移前后的两条抛物线值 。三.分层练习 变式提高在同一直角坐标系中。函数yx22图象与函数yx2的图象有什么关系? 要求画出函数yx2与函数yx22的草图,由草图观察得出结论:函数yx22的图象与函数yx2的图象的开口方向、对称轴相同,但顶点坐标不同,函数yx22的图象可以看成将函数yx2的图象向上平移两个单位得到的。4. 归纳提升 培养能力 1 在

17、同一直角坐标系中,函数yax2k的图象与函数yax2的图象具有什么关系? 2你能说出函数yax2k具有哪些性质?五.达标反馈 落实目标1.抛物线向上平移3个单位,就得到抛物线_;抛物线向下平移4个单位,就得到抛物线_2抛物线向上平移3个单位后的解析式为 ,它们的形状_,当= 时,有最 值是 。3由抛物线平移,且经过(1,7)点的抛物线的解析式是 ,是把原抛物线向 平移 个单位得到的。4. 写出一个顶点坐标为(0,3),开口方向与抛物线的方向相反,形状相同的抛物线解析式_5. 抛物线关于x轴对称的抛物线解析式为_6.二次函数的经过点A(1,-1)、B(2,5).求该函数的表达式;若点C(-2,)

18、,D(,7)也在函数的上,求、的值。第四课时 26.1.3 二次函数的图象(二)学习目标: 1使学生能利用描点法画出二次函数ya(xh)2的图象。 2让学生经历二次函数ya(xh)2性质探究的过程,理解函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系。学习重难点:重点:会用描点法画出二次函数ya(xh)2的图象,理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的关系是教学的重点。难点:理解二次函数ya(xh)2的性质,理解二次函数ya(xh)2的图象与二次函数yax2的图象的相互关系是教学的难点。学习过程:一.复

19、习引入 指导预习1在同一直角坐标系内,画出二次函数yx2,yx21的图象,并回答: (1)两条抛物线的位置关系。 (2)分别说出它们的对称轴、开口方向和顶点坐标。 (3)说出它们所具有的公共性质。 2二次函数y2(x1)2的图象与二次函数y2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二.自主合作 探究新知画出二次函数,的图象;先列表:432101234归纳:(1)的开口向 ,对称轴是直线 ,顶点坐标是 。图象有最 点,即= 时,有最 值是 ;在对称轴的左侧,即 时,随的增大而 ;在对称轴的右侧,即 时随的增大而 。 可以看作由向 平移 个单位形成的。(2)

20、的开口向 ,对称轴是直线 ,顶点坐标是 , 图象有最 点,即= 时,有最 值是 ;在对称轴的左侧,即 时,随的增大而 ;在对称轴的右侧,即 时随的增大而 。可以看作由向 平移 个单位形成的。引导总结:(一)抛物线特点:1.当时,开口向 ;当时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。(二)抛物线与形状相同,位置不同,是由 平移得到的。(填上下或左右)结合学案和课本第8页可知二次函数图象的平移规律:左 右 ,上 下 。(三)的正负决定开口的 ;决定开口的 ,即不变,则抛物线的形状 。因为平移没有改变抛物线的开口方向和形状,所以平移前后的两条抛物线值 。三.分层练习 变式提高问题1:在同

21、一直角坐标系中,函数y(x2)2图象与函数yx2的图象有何关系? (函数y(x2)2的图象可以看作是将函数yx2的图象向左平移2个单位得到的。) 问题2:你能说出函数y(x2)2图象的开口方向、对称轴和顶点坐标吗? (函数y(x十2)2的图象开口向下,对称轴是直线x2,顶点坐标是(2,0)。 问题3:你能得到函数y(x2)2的性质吗?四.归纳提升 培养能力1在同一直角坐标系中,函数ya(xh)2的图象与函数yax2的图象有什么联系和区别? 2你能说出函数ya(xh)2图象的性质吗? 3谈谈本节课的收获和体会。5. 达标反馈 落实目标1抛物线的开口_;顶点坐标为_;对称轴是直线_;当 时,随的增

22、大而减小;当 时,随的增大而增大。2. 抛物线的开口_;顶点坐标为_;对称轴是直线_;当 时,随的增大而减小;当 时,随的增大而增大。3. 抛物线的开口_;顶点坐标为_;对称轴是_;4.抛物线向右平移4个单位后,得到的抛物线的表达式为_5. 抛物线向左平移3个单位后,得到的抛物线的表达式为_6将抛物线向右平移1个单位后,得到的抛物线解析式为_7抛物线与y轴的交点坐标是_,与x轴的交点坐标为_8. 写出一个顶点是(5,0),形状、开口方向与抛物线都相同的二次函数解析式_第五课时 26.1.3 二次函数的图象(三)学习目标: 1使学生理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系

23、。2会确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标。3让学生经历函数y=a(xh)2k性质的探索过程,理解函数y=a(xh)2k的性质。学习重难点:重点:确定函数y=a(xh)2k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系,理解函数y=a(xh)2k的性质是教学的重点。难点:正确理解函数y=a(xh)2k的图象与函数y=ax2的图象之间的关系以及函数y=a(xh)2k的性质是教学的难点。学习过程:一、复习引入 指导预习 1函数y=2x21的图象与函数y=2x2的图象有什么关系? 2函数y=2(x1)2的图象与函数y=2x

24、2的图象有什么关系? 3函数y=2(x1)21图象与函数y=2(x1)2图象有什么关系?函数y=2(x1)21有哪些性质?二.自主合作 探究新知在坐标中做出的图象:观察:1. 抛物线开口向 ;顶点坐标是 ;对称轴是直线 。2. 抛物线和的形状 ,位置 。(填“相同”或“不同”)3. 抛物线是由如何平移得到的?4.平移前后的两条抛物线值变化吗?为什么?归纳:(一)抛物线的特点:1.当时,开口向 ;当时,开口 ;2. 顶点坐标是 ;3. 对称轴是直线 。(二)抛物线与形状 ,位置不同,是由平移得到的。二次函数图象的平移规律:左 右 ,上 下 。(三)平移前后的两条抛物线值 。三.分层练习 变式提高

25、例.要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?练习:如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. AO= 3米,现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点A及抛物线顶点P的坐标;(2) 求出这条抛物线的函数解析式;四.归纳提升 培养能力1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。五.达标反馈 落实目标1.二次函数的图象可由的图象( )A.

26、向左平移1个单位,再向下平移2个单位得到 B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到 D.向右平移1个单位,再向上平移2个单位得到2.抛物线开口 ,顶点坐标是 ,对称轴是 ,当x 时,y有最 值为 。3.函数的图象可由函数的图象沿x轴向 平移 个单位,再沿y轴向 平移 个单位得到。4.若把函数的图象分别向下、向左移动2个单位,则得到的函数解析式为 。5. 顶点坐标为(2,3),开口方向和大小与抛物线相同的解析式为( )A B CD6.一条抛物线的形状、开口方向与抛物线相同,对称轴和抛物线相同,且顶点纵坐标为0,求此抛物线的解析式.第六课时 二次函数

27、的图象 学习目标: 1使学生掌握用描点法画出函数yax2bxc的图象。2使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3让学生经历探索二次函数yax2bxc的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数yax2bxc的性质。学习重难点:重点:用描点法画出二次函数yax2bxc的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。难点:理解二次函数yax2bxc(a0)的性质以及它的对称轴(顶点坐标分别是x、(,)是教学的难点。学习过程:一、复习引入 指导预习 1你能说出函数y4(x2)21图象的开口方向、对称轴和顶点坐标吗? 2函数y4(x2)21图象与

28、函数y4x2的图象有什么关系? 3函数y4(x2)21具有哪些性质? 4不画出图象,你能直接说出函数yx2-2x+21的图象的开口方向、对称轴和顶点坐标吗? 5你能画出函数yx2-2x+21的图象,并说明这个函数具有哪些性质吗?二.自主合作 探究新知1.如何把函数yx2-2x+21化为y=a(xh)2k的形式?2.请说出函数yx2-2x+21的开口方向、对称轴、顶点坐标。3.根据以上信息列表、描点、连线画出函数yx2-2x+21的图像。4观察:图象有最 点,即= 时,有最 值是 ; 时,随的增大而增大; 时随的增大而减小。该抛物线与轴交于点 。该抛物线与轴有 个交点.5.你能把二次函数化成顶点

29、式吗?说出它的开口方向、对称轴、顶点坐标。 yax2bxca(x2x)c ax2x()2()2c ax2x()2c a(x)2 当a0时,开口向上,当a0时,开口向下。对称轴是x,顶点坐标是(,)三.分层练习 变式提高yax2yax2kya(xh)2ya(xh)2kyax2bxc开口方向顶点对称轴最值增减性(对称轴左侧)四.归纳提升 培养能力1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。五.达标反馈 落实目标1填空:(1)抛物线yx22x2的顶点坐标是_;(2)抛物线y2x22x的开口_,对称轴是_;(3)抛物线y2x24x8的开口_,顶点坐标是_;(4)抛物线yx

30、22x4的对称轴是_;(5)二次函数yax24xa的最大值是3,则a_2画出函数y2x23x的图象,说明这个函数具有哪些性质。3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y3x22x;(2)yx22x(3)y2x28x8 (4)yx24x34求二次函数ymx22mx3(m0)的图象的对称轴,并说出该函数具有哪些性质第七课时 用待定系数法求二次函数的解析式学习目标 1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。学习重

31、难点重点:用待定系数法求二次函数解析式难点:根据条件选取适当的解析式学习过程一、复习引入 指导预习1、一般地,形如yax2bxc (a,b,c是常数,a0)的函数,叫做二次函数,所以,我们把_叫做二次函数的一般式。2、二次函数yax2bxc用配方法可化成:ya(xh)2k,顶点是(h,k)。配方: yax2bxc_a(x)2。对称轴是x,顶点坐标是(,), h,k=, 所以,我们把_叫做二次函数的顶点式。二.自主合作 探究新知例1 已知二次函数的图象过(1,0),(1,4)和(0,3)三点,求这个二次函数解析式。小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在

32、函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。例2 已知二次函数的图象经过原点,且当x1时,y有最小值1, 求这个二次函数的解析式。小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。 三.分层练习 变式提高练习:根据下列条件求二次函数解析式(1)已知一个二次函数的图象经过了点A(0,1),B(1,0),C(1,2);(2)已知抛物线顶点P(1,8),且过点A(0,6); 例3 已知二次函数的图象与x轴交点的横坐标分别是x1=3,x2=1,且与y轴交点为(0,3),求这个二次函数解析式。想一想:还有其它方法吗?小结

33、: 一般地,函数yax2bxc的图象与x轴交点的横坐标即为方程ax2bxc0的解;当二次函数yax2bxc的函数值为0时,相应的自变量的值即为方程ax2bxc0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:ya(xx1)(xx2),其中x1 ,x2 为两交点的横坐标。四.归纳提升 培养能力1、二次函数解析式常用的有三种形式: (1)一般式:_ (a0)(2)顶点式:_ (a0) (3)交点式:_ (a0)2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式,要让学生熟练掌握配方法,并由此确定二次函数的

34、顶点、对称轴,并能结合图象分析二次函数的有关性质。(1)当已知抛物线上任意三点时,通常设为一般式yax2bxc形式。(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式ya(xh)2k形式。(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式ya(xx1)(xx2)。五.达标反馈 落实目标1已知二次函数的图象的顶点坐标为(2,3),且图像过点(3,1),求这个二次函数的解析式2.已知二次函数的图象过点(1,2),则的值为_3.一个二次函数的图象过(0,1)、(1,0)、(2,3)三点,求这个二次函数的解析式。4. 已知双曲线与抛物线交于A(2,3)、B(,2)、c(3, )三点.

35、 (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A、点B、点C,并求出ABC的面积,5.如图,直线交轴于点A,交轴于点B,过A,B两点的抛物线交轴于另一点C(3,0),(1)求该抛物线的解析式; 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.第八课时 26.2用函数观点看一元二次方程学习目标1总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根2会利用二次函数的图象求一元二次方程的近似解。3.经历探索二次函数与一元二次方程的关系的过程,体会方程与函

36、数之间的联系4.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想学习重难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。学习过程一、复习引入 指导预习1、一元二次方程ax2+bx+c=0的根的情况可由_确定。2不解方程判断下列方程的根的情况。(1)x2+x-2=0 (2) x2 - 6x +9=0 (3) x2 x+ 1=0二.自主合作 探究新知问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞

37、行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h20t5t2。考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?问题的讨论二次函数(1)yx2x2;(2) yx26x9;(3) yx2x0。的图象如图26.22所示。(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗

38、?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。归纳:一般地,从二次函数yax2bxc的图象可知,(1)如果抛物线yax2bxc与x轴有公共点,公共点的横坐标是x0,那么当xx0时,函数的值是0,因此xx0就是方程ax2bxc0的一个根。(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。例 利用函数图象求方程x22x20的实数根(

39、精确到0.1)。解:作yx22x2的图象(图26.23),它与x轴的公共点的横坐标大约是0.7,2.7。所以方程x22x20的实数根为x10.7,x22.7。三.分层练习 变式提高1.利用抛物线图象求解一元二次方程及二次不等式 (1)方程的根为_;(2)方程的根为_;(3)方程的根为_;(4)不等式的解集为_;(5)不等式的解集为_ _;2.根据图象填空:(1)_0;(2) 0;(3) 0;(4) 0 ;(5)_0;(6);(7);四.归纳提升 培养能力1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。五.达标反馈 落实目标1.不与x轴相交的抛物线是( ) A y=2x

40、2 3 B y= - 2 x2 + 3 C y= - x2 2x D y=-2(x+1)2 - 32.如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=,此时抛物线 y=x2-2x+m与x轴有 个交点.3.已知抛物线 y=x2 8x +c的顶点在 x轴上,则c=.4.抛物线y=x2-3x+2 与y轴交于点,与x轴交于点 .5.抛物线y=2x2-3x-5 与y轴交于点,与x轴交于点.6.若抛物线y=ax2+bx+c,当 a0,c0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a0时,抛物线开口向 ,有最 点,函数有最 值,是 。2. 二次函数y=-3(x+4) 2-1

41、的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。二.自主合作 探究新知 问题1: 用总长为60m的篱笆围成矩形场地,若其中一边长为l,面积为100m2,可列方程为_问题2:用总长为60m的篱笆围成矩形场地,若其中一边长为l,当l是多少时,场地的面积S最大?1.矩形面积S随矩形一边长l的变化而_.2.s=_3.当l=_时,s最大=_探究一: 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品

42、的进价为每件40元,如何定价才能使利润最大? 思考:1)题目中有几种调整价格的方法? (2) 题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?讨论:先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖 件,实际卖出 件,每件利润为 元,因此,所得利润为 元当销售单价为 元时,可以获得最大利润, 最大利润是 元.(2)在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?探究二 看书自学总结:解决这类问题的一般步骤是:(1)列出二次

43、函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。三.分层练习 变式提高已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大? 四.归纳提升 培养能力1通过本节课的学习,你学到了哪些知识?还存在什么困惑?2谈谈你的学习体会。五.达标反馈 落实目标1.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。则定价 才能使利润最

44、大,最大利润是 。 2.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。则定价 才能使利润最大,最大利润是 。 3.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 问增种多少棵橙子树,果园的总产量最高,若每个橙子市场售价约2元,果园的总产值最高约为多少?4.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么

45、半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?第十课时 实际问题与二次函数(2)学习目标: 1根据实际问题建立适当的坐标系,选择恰当的解析式求二次函数解析式; 2.经历数学建模的基本过程,体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值 重点难点: 重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数yax2、yax2bxc的关系式是教学的重点;用二次函数的性质解决简单的实际问题。难点:建立适当的坐标系,选择恰当的解析式求二次函数解析式。学习过程:1、 复习引入 指导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论