



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、岳城水库洪水预报人工神经网络模型实现 摘要应用visual basic 6.0编程技术,实现了人工神经网络bp算法的程序化,并建立了岳城水库洪水过程预报的反向传播神经网络模型,经检验,洪水预测精度较好,结果令人满意,为岳城水库的入库洪水预报及调度工作提供新的思路和依据。 关键词人工神经网络 BP算法 VB程序 洪水预报 1前言 人工神经网络(ANN)又称连接机制模型(Connection Model)或并行分布处理模型(P
2、arallal Distributed Model)。作为人工智能的研究方法,目前已广泛应用于自然科学的各个领域,应用计算机程序来模拟这种特殊的数学模型并应用于实际流域的洪水预报研究中,无疑是一种新的尝试和有益探索。岳城水库是海河流域南运河水系漳河上的一座大型控制性工程,入库洪水突发性强,水猛多沙,为确保下游河北、河南、山东、天津广大平原地区和京广铁路的安全,对水库入库洪水进行精确预报,及时采取预泄和分洪措施显得极其重要,因此,用人工神经网络模型模拟预报水库的入库洪水过程,有重要参考和借鉴意义。2BP网络的构建人工神经网络是一个高度复杂的非线性动力学系统,它有大量的简单处理单元(神经元)广泛连
3、接而成,他对人脑的功能作了某种简化、抽象和模拟,具有很强的非线性映射能力,其中对多层前向神经网络bp模型的研究相对成熟,应用最为广泛,其模型结果如结构中,输入层、隐层和输出层神经元的个数根据具体情况设定,其中隐层层数不一,不失一般性对输出层中只含有一个神经元的三层前向神经网络分析假设输入层中有个神经元,隐层中有个神经元,输出层神经元的输出,即整个网络的输出为Y,网络中输入层的输入分别为,,则隐层神经元的输入分别是 (i=1,2,m)
4、60; (2.1)在上式中,为隐层神经元i与输入层神经元j的连接权,为隐层神经元的阈值,选择函数作为隐层神经元的激发函数,则隐层神经元的输出为 (i=1,2,m) (2.2)输出神经元的激发函数取为线性函数,输出层神经元的输出及整个网络的输出为
5、0; (2.3)其中,Vi为输出层神经元与隐层神经元i的连接权。定义由、组成的向量为网络的连接权向量(ij, i,i)。设有学习样本(,;)( =1,2,p;p为样本数)。对某样本(,;)在给出网络向量后,可以通过公式(1.1)(1.3)计算出网络的输出值,对于样本定义网络的输出误差为:
6、(2.4)定义误差函数为: (2.5)(ij, i,i)随机给出,计算式(2.5)定义的误差值较大,网络计算精度不高,在确定网络结构后,通过调整(ij, i,i)的值,以逐步降低误差,以提高网络的计算精度,下面给出根据误差信息调整(ij, i,i)的具体计算过程。 在反向传播算法中,是沿着误差函数随(ij, i,i)变化的负梯度方向对进行休整。设的修正值为:
7、; (2.6)式中:为第n次迭代计算时连接权的修正值;为前一次迭代计算时计算所得的连接权修正值;为学习率,取01间的数;为动量因子,一般取接近1的数。将式(1.4)和(1.5)代入式(1.6)中,有 (2.7)定义=(,),则 (2.8) (2.9)
8、160; (2.10)采用迭代式对修正计算,得到新的连接权向量。对于所有的学习样本均按照样本排列顺序进行上述计算过程,然后固定的值,对于p个样本分别进行正向计算,从而求出学习样本的能量函数值 (2.11)这样结束了一个轮次的迭代过程,当满足
9、某一精度要求时,就停止迭代计算,所得(ij, i,i)即为最终模型参数,否则就要进行新一轮的计算。3BP算法的VB程序实现 因程序代码太多,不再给出。网络学习程序界面如下图24洪水预报网络模型构建41资料收集岳城水库的入库水文站为观台水文站,该站上游有清漳河匡门口水文站和浊漳河天桥段水文站,距观台分别为66km和64km。上游匡门口、天桥段与下游观台的区间流域面积为1488km2,见流域水系图3。资料采用年鉴1962、1976、1977、1988年四次洪水和相应年份的区间时段降雨量共118组调查数据作为模型的学习训练样本,另取1971年和1982年两次大洪水作
10、为模型的检验数据。 42预报模型构建 网络模型采用输出层中有一个神经元的三层前向人工神经网络,洪水预报模型的输出节点为岳城水库的入库站观台水文站的时刻的流量,即网络。考虑河道洪水演进时间和区间流域的产汇流时间,分别取清漳河匡门口站和天桥断以及流域平均降雨量、作为模型的输入节
11、点值;隐层神经元节点数和输入层节点数相同取为4。 模型参数优化计算中,学习率越大,学习速度会越快,但是过大时会引起振荡效应;动量因子取得过大可能导致发散,过小则收敛速度太慢。据有关文献介绍,取,算法收敛速度较快。本次计算取,;网络中的初始值取(0.10.1)之间的随机数(由VB程序产生)。样本的归一化处理为了有效利用型函数的特性,以保证网络神经元的非线性作用,对于数值型的学习样本要进行归一化处理。对样本(p=1,2,p)定义,归一化处理计算就是按照公式
12、; (4.1)将样本转化为01之间的数据。对于网络的输出数据还应进行还原计算恢复实际值,公式为: (4.2)使用VB程序对网络模型进行训练学习,经102135次学习后,网络输出能量函数值为3.2×10-3,此时得到模型最优参数如表1。表1 模型参数表序号
13、; 1 1.625608 -2.361247 -3.204714 2.846384 -2.718568 -1.185164 -1.0297362 0.138017
14、0; -0.041076 -0.670781 0.844503 0.936162 -2.746974 1.5463623 1.770369 -6.048657 1.134271 0.745476 0.58331 -3.063508 2.503332 0.25 0.94
15、0; -0.818313 1.471144 -1.484265 0.875319 -1.995911 -2.667308 2.0759745 -1.973073 0.3014712 2.993124 -0.160362 -3.290356 -1.59743 -0.627028
16、 5模型检验应用以上该区洪水预报的神经网络模型参数分别对1982年、1971年的两次洪水进行检验预测,相应洪水过程趋势线见图4图5。表2 预报考评指标表序号 序号 1982.1
17、160; 0.03 1 1982年前20h 0.691982.2
18、0; 0.008 1 1982年后80h 0.071982.3 0.04
19、; 0.5 1982年总过程 0.191982.4 0.04 2 1971
20、年前11h 0.71971 0.06 1 1971年后50h 0.12aver 0.036 1.1 1971年总过程 0.23注: 1. 1982.1表示1982年大洪水的第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石油批发行业竞争分析考核试卷
- 篷布产业节能减排考核试卷
- 电气设备客户满意度提升考核试卷
- 畜牧业供应链管理与优化考核试卷
- 渔业产品营销渠道开发考试考核试卷
- 护生培训护理安全教育
- 城轨类说课课件
- 2025塑料制品买卖合同模板
- 2025《瑞达地产劳动合同》
- 2025室内墙面涂料施工合同范本2
- 2025年元宇宙+游戏行业新兴热点、发展方向、市场空间调研报告
- 森林管护员面试题及答案
- 2025年高级考评员职业技能等级认定考试题(附答案)
- 培训课件:混凝土结构的施工技术(浇筑、养护)
- “中华传统文化经典研习”任务群下先秦诸子散文教学策略研究
- 2025年高考语文模拟作文导写及点评:社会时钟
- 《护理信息系统》课件
- 单片机技术与应用知到智慧树章节测试课后答案2024年秋甘肃省农垦中等专业学校
- 施工现场平面布置与临时设施、临时道路布置方案
- 建筑施工大型机械设备安全使用与管理培训
- T-CNPPA 3027-2024 药品泡罩包装应用指南
评论
0/150
提交评论