版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、带电粒子在有界磁场中运动的临界问题的解题技巧仁寿一中北校区高2012级物理组带电粒子(质量m、电量q确定)在有界磁场中运动时, 涉及的可能变化的参量有入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类,并可归并为6大类型。所有这些问题,其通用解法是:第一步,找准轨迹圆圆
2、心可能的位置,第二步,按一定丿呗序.尽可能多地作不同圆心对应的轨迹圆(一般至少 5画个类型已知参量类型一入射点、入射方向;出射点、出射方向类型二入射点、速度大小;出射点、速度大小类型三入射点、出射点类型四入射方向、出射方向类型五入射方向、速度大小;出射方向、速度大小;类型六入射点、出射方向;出射点,入射方向轨迹圆),第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定)这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。* X *【例1】如图所示,长为L的水平极板间有垂直于纸面向内的
3、匀强磁 场,磁感应强度为 B,板间距离也为 L,板不带电.现有质量为 m、电荷 量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是BqLA 使粒子的速度 v<4mBqLC 使粒子的速度 v> m5BqLB.使粒子的速度 v> 4mBqL5BqLD 使粒子的速度<v<【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如4m4m,其中轨迹圆和图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙)为临界轨迹圆。轨道半径小于轨迹圆或大于轨迹圆的粒子,均可射
4、出磁场而不打在极板上。*Jr*Jr*JrL比图甲【解答】AB图乙L-2)2,得5Lri =4mv i5 BqL5BqL由ri = D ,得vi=,所以v>时粒子能从右边穿出Bq4m4m粒子擦着上板从左边穿出时,圆心在O '点,有Lr2 = _4mv2BqLBqL由2 =,得V2=,所以、v< 时粒子能从左边穿出.Bq4m4m粒子擦着板从右边穿出时,圆心在O 点,有 ri2= L2 + (门【易错提醒】容易漏选A,错在没有将r先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于J yLX X X XV两屏
5、交线的直线为 x轴和y轴,交点O为原点,如图所示。在y>0 ,X Xlife*»X X! *0< x< a的区域有垂直于纸面向里的匀强磁场,在y>0 , x>a的区域 X X IL”ic0有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q (q>0 )的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值已知速度最大的粒子在 0< x<a的区域中运动的时间与在 x> a的区域中运动的时间之比为 2 : 5,在磁场中运
6、动的总时间为7T/12,其中T为该粒子在磁感应强度为 B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。【分析】粒子在0<x<a的区域中的运动属于初速度方向已知、大小不确定的情况,在垂直初速 度的直线(即y轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆与直线x=a相切,为能打到y轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆,粒子 将进入x> a的区域,由对称性可知,粒子在x> a的区域内的轨迹圆圆心均在在 x=2 a直线上,在,其中轨迹圆为半径x=2 a直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如
7、图乙)最小的情况,轨迹圆为题目所要求的速度最大的粒子的轨迹。图甲XyXXa2a图乙【答案】竖直屏上发亮的范围从0到2a,水平屏上发亮的范围从2a2- 3a3mv【解答】粒子在磁感应强度为 B的匀强磁场中运动半径为:rqB速度小的粒子将在 x<a的区域走完半圆,射到竖直屏上。半圆的直径在y轴上,半径的范围从0到a,屏上发亮的范围从0到2a。轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与 x轴在D点相切(虚线),0D=2 a,这是水平屏上发亮范围的左边界。速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C和C' , C在y轴上,有
8、对称性可知 C'在x=2 a直线上。t2为在x> a的区设ti为粒子在0< x< a的区域中运动的时间, 文档域中运动的时间,tl27T由题意可知 一,tit2t2512T -5T由此解得:titi612由式和对称性可得OCM60°MC'P 360°5_150°12所以 NC'P1506090即弧长NP为1/4圆周。因此,圆心C'在x设速度为最大值粒子的轨道半径为轴上。MC 'N60°R,由直角VCOC'可得2Rsin602a R由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标
9、【易错提醒】本题容易把握不住隐含条件一一所有在x> a的区域内的轨迹圆圆心均在在x=2 a直线上,从而造成在 x>a的区域内的作图困难;另一方面,在 x>a的区域内作轨迹圆时,半径未从轨迹圆半径开始取值,致使轨迹圆未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x= a。类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上一一所谓“圆心圆”,是指以入射mv点为圆心,以r为半径的圆。qBa【例2】如图所示,在0 Wxwa、0Wy w 范围内有垂直手 xy平面向外的匀强磁场,磁感应强度2大小为B。坐标原点
10、O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xOy平面内,与y轴正方向的夹角分布在 090°范围内。己知粒子在磁场中做圆周 运动的半径介于 a/2到a之间,从发射粒子到粒子全部离开 磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分 之一。求最后离开磁场的粒子从粒子源射出时的(1) 速度的大小;(2) 速度方向与y轴正方向夹角的正弦。【分析】本题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点 0,入射点0到任一圆心的距离均为 r,故所有轨迹圆的圆心均在一个“圆心圆” 以入射点 0为圆心、r
11、为半径的圆周上(如图甲)。考虑到粒子是向右偏转,我们从最左边的轨 迹圆画起一一取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹180 ° )弦长越长,圆心角对应弦长大于轨迹对应弦长一一半径一定、圆心角都较小时(均小于越大,粒子在磁场中运动时间越长一一故轨迹对应圆心角为90R (2【答案】v图甲图乙(2 于)詈,sin_6- 6=10【解答】设粒子的发射速度为v,粒子做圆周运动的轨道半径为R根据牛顿第二定律和洛伦兹力得:2r v ” f mv qvB m , 解得:R RqB当a/2< R< a时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧
12、,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,t=T4时,/ OCA= n/2设最后离开磁场的粒子的发射方向与y轴正方向的夹角为a,由几何关系得:aRsin R , Rsin a Rcos ,2且 sin2cos21.66 aqB .6-: 6解得:R (2)a, v (2), sin =22 m10【易错提醒】由于作图不仔细而把握不住“轨迹对应弦长大于轨迹对应弦长一一半径一定、圆心角都较小时(均小于180 °)弦长越长,圆心角越大,粒子在磁场中运动时间越长”,从而误认为轨迹对应粒子在磁场中运动时间最长。这类题作图要讲一个小技巧一一按粒子偏转方向移动圆 心
13、作图。X【练习2】如图所示,在正方形区域abcd内充满方向垂直纸面向里的、 磁感应强度为 B的匀强磁场。在t=0时刻,一位于ad边中点O的粒子源 在abed平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od边的夹角分布在0180 °范围内。已知沿Od方向发射的粒子 在t=t0时刻刚好从磁场边界 cd上的p点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方 形边长L,粒子重力不计,求:(1) 粒子的比荷q/ m ;(2) 假设粒子源发射的粒子在 0180。范围内均匀分布,此时刻仍在磁场中的粒子数与粒子源 发射的总粒子数之比;(3) 从粒子发射到全部粒子离开磁场所用的
14、时间。【分析】以L为半径、0点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开始画起(轨迹),在“圆心圆”取不同点为圆心、以L为半径作出一系列圆(如图乙);其中轨迹与轨迹对称,在磁场中运动时间相同;轨迹并不经过c点,轨迹对应弦长短于轨迹对应弦长一一即沿轨迹运动的粒子最后离开磁场。【解答】(1 )初速度沿 Od方向发射的粒子在磁场中运动的轨迹如图,其圆心为n由几何关系有:Onp ,t0 6 12粒子做圆周运动的向心力由洛仑兹力提供根据牛顿第二定律得知口(討r,v乍得m臥(2)依题意,同一时刻仍在磁场中的粒子到0点距离相等。在to时刻仍在磁场中的粒子应位于以0为圆心,Op为半径的
15、弧 pw上。由图知5pOw 6此时刻仍在磁场中的粒子数与总粒子数之比为5/6WY(3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b点相交,设此粒子运动轨迹对应的圆心角为B,则在磁场中运动的最长时间t rT12 arcsin 上4to所以从粒子发射到全部离开所用时间为t(2 arcsin)t0。4【易错提醒】本题因作图不认真易错误地认为轨迹经过c点,认为轨迹对应弦长等于轨迹对应弦长,于是将轨迹对应粒子作为在磁场中运动时间最长的粒子进行计算;虽然计算出来结果正确,但依据错误。类型三:已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向 这类问题的特点是:所有轨迹圆圆心均在入射点和出射点
16、连线的中垂线上。【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向m、电荷量+ q外,大小为B,沿x轴放置一个垂直于 xOy平面的较大的荧光屏,P点位于荧光屏上,在 y轴上的P点处在亮线上,已知 OA = OP = 1,A点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为 的同种粒子,这些粒子打到荧光屏上能在屏上形成一条亮线, 求:(1 )若能打到P点,则粒子速度的最小值为多少?(2)若能打到P点,则粒子在磁场中运动的最长时间为多少?【分析】粒子既经过 A点又经过P点,因此AP连线为粒子轨迹圆的一条弦,圆心必在该弦的 中垂线OM上(如图甲
17、)。在OM上取不同点为圆心、以圆心和 A点连线长度为半径由小到大作出 一系列圆(如图乙),其中轨迹对应半径最小,而轨迹对应粒子是Oi点上方轨道半径最大的,由图可知其对应圆心角也最大。【答案】(1)v2m,(2)t 2qB【解答】(1)粒子在磁场中运动,洛伦兹力提供向心力,设粒子的速度大小为v时,其在磁场v2则由牛顿第二定律有:qBv = m R若粒子以最小的速度到达 P点时,其轨迹一定疋s 近由几何关系知:sap= J2l R= l2 2.2qBlv =2m(2)设粒子在磁场中运动时其轨迹所对应的圆心角为粒子在磁场中的运动周期 T= 2nmqB则粒子的最小速度宀曰以AP为直径的圆(如图中圆 O
18、i所示)则粒子在磁场中的运动时间为:t T m2 n qB由图可知,在磁场中运动时间最长的粒子的运动轨迹如图中圆H *O2所示中的运动半径为 R此时粒子的初速度方向竖直向上,则由几何关系有:则粒子在磁场中运动的最长时间:t 3nm2qB在平面右侧的半空间存在一磁感强【练习3】图中虚线MN是一垂直纸面的平面与纸面的交线度为B的匀强磁场,方向垂直纸面向外,0是MN上的一点,从 0点可以向磁场区域发射电量为+ q,质量为m,速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇.P到O的距离为L,不计重力及粒子间的相互作用(1)求所考察的粒子在磁场中
19、的轨道半径(2)求这两个粒子从 0点射入磁场的时间间隔【分析】如图甲,作 0P连线中垂线,然后在中垂线上取关于C对称的两点01、02为圆心过0、P作出两个轨迹圆,如图乙所示。保留相遇前轨迹如图丙所示。mv丄 4m/LqB、【答案】(1 R ,( 2) t arccos( )qBqB2mv【解答】(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律得2r vc mvqvB m ,则 R -RqB(2)如图所示,以0P为弦可以画两个半径相同的圆,分别表示在P点相遇的两个粒子的轨迹。圆心分别为 0仆02,过0点的直径分别为 001Q1、002Q2,在0点处两个圆的切线分别表示两个粒子的射入方
20、向,用 嬢示它们之间的夹角。由几何关系可知,P01Q1P02Q2,从0点射入到相遇,粒子 1的路程为半个圆周加弧长Q1P= R B,粒子2的路程为半个圆周减弧长 PQ2= R 0粒子1的运动时间为 ii粒子2运动的时间为 t2两粒子射入的时间间隔为因为 Rcos L2 2所以 2arccos丄 2R有上述算式可解得t1 R-T,其中T为圆周运动的周期。2 v1 RT2 vRt t1 t22-v4mLqBxarccos( ) qB2mv类型四:已知初、末速度的方向(所在直线),但未知初速度大 小(即未知轨道半径大小)这类问题的特点是:所有轨迹圆的圆心均在初、末速度延长线形 成的角的角平分线上。【
21、例4】在xOy平面上的某圆形区域内, 存在一垂直纸面向里的匀强磁场, 磁 感应强度大小为B.一个质量为m、带电量为+ q的带电粒子,由原点O开始沿x正方 向运动,进入该磁场区域后又射出该磁场;后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30 ° (如图所示),已知P到O的距离为L,不计重力的影响。(1 )若磁场区域的大小可根据需要而改变,试求粒子速度的最大可能值;(2)若粒子速度大小为v qBL,试求该圆形磁场区域的最小面积。6m【分析】;P图乙初、末速度所在直线必定与粒子的轨迹圆相切,轨迹圆圆心到两条直线的距离(即轨道半径)相等,因此,圆心必位于初、末速度延长线形成的角的
22、角平分线QC上(如图甲);在角平分线QC上取不同的点为圆心,由小到大作出一系列轨迹圆(如图乙),其中以C点为圆心轨迹是可能的轨迹圆中半径最大的,其对应的粒子速度也最大。【解答】过P点作末速度所在直线, 交x轴于Q点,经分析可知,粒子在磁场中作圆周运动的轨迹的圆心必在OPQ的角平分线QC上,如图甲所示。设粒子在磁场中作匀速圆周运动的轨道半径为r,则由牛顿2第二定律,有 qvB m rmvqB由此可知粒子速度越大,其轨道半径越大,由图乙可知,速度最大的粒子在磁场中运动轨迹的圆心是y轴上的C点。(1)如图丙所示,速度最大时粒子的轨迹圆过0点、且与PQ相切于A点。图丁由几何关系有OQ Ltan30 ,
23、 » OQ tan30 ,可得ri L13由、求得 v qBL3mqBLL(2 )将v代入式,可得r2 ,粒子的运动轨迹是6m6如图丁所示的轨迹圆,该轨迹圆与x轴相切于D点、与PQ相切于E点。连接DE,由几何关系可知 DE ,3r2由于D点、E点必须在磁场内,即线段 DE在磁场内,故可知磁场面积最小时必定是以 DE为直径(如图丁中所示)。即面积1I /V' 小II |!IIi|*iilI最小的磁场半径为 R DE22V3 2n_2则磁场的最小面积为 s nRn L)1248【练习4】如图所示,xOy平面内存在着沿 y轴正方向的匀 强电场.一个质量为 m,带电荷量为+ q的粒子
24、从坐标原点 O以 速度V0沿x轴正方向开始运动.当它经过图中虚线上的M(2- ,;3a, a)点时,撤去电场,粒子继续运动一段时间后进入一个矩形匀强磁场区域(图中未画出),又从虚线上的某一位置 N处沿y轴负方向运动并再次经过 M点.已知磁场方向垂直 xOy平面(纸面)向里,磁感应强度大小为 B,不计粒子的 重力,试求:(1)电场强度的大小;(2)N点的坐标;矩形磁场的最小面积.【分析】粒子在电场中偏转后进入MN右侧,初速度方向已知,另一方面,粒子末速度由N指向M。初速度、末速度所在直线交于点M,过M点作 NMP角平分线 MO',粒子轨迹圆的圆心必在直线MO'上。取其上一点 O&
25、#39;为圆心作出轨迹圆(如图所示)【答案】2mvo6qaXn2 3a SminL24m2v02b2【解答】粒子从O到M做类平抛运动,设时间为 t,则有 2 3aVgtVytan2mvo6qa设粒子运动到M証 v。3症3Vyv0由题意知,粒子从运动,设半径为 R,则点时速度为V,与x方向的夹角为,则2恵v3P点进入磁场,从2vqvB m一rN点离开磁场,粒子在磁场中以点为圆心做匀速圆周解得粒子做圆周运动的半径为mv2、3mv0由几何关系知,PMN所以N点的纵坐标为qB30当矩形磁场为图示虚线矩形时的面积最小。4、3mv3qBl2r所以矩形磁场的最小面积为Smin3qB2mv0aqB则矩形的两个
26、边长分别为、3m%qB2 211 4m v。L1 L2 2 2q bRsin横坐标为Xn类型五:已知初速度的大小(即已知轨道半径大小)和方向,但入射点不确定这类问题的特点是:所有轨迹圆的圆心均在将入射点组成的边界沿垂直入射速度方向平移一个 半径距离的曲线上。【例5】如图所示,长方形 abed的长ad=0.6 m,宽ab =0.3 m,0、e分别是ad、be的中点,以e为圆心eb为半径的圆弧和以 0为圆心0d为半径的圆弧组成的区域内有垂直纸面向里的匀强磁场(eb边界上无磁场)磁感应强度 B=0.25T。一群不计重力、质量m=3 xio-7kg、电荷量q=+2 x10-3C的带正电粒子以速度 v=
27、5 X02m/s沿垂直ad方向且垂直于磁场射入磁场区域,则下列判断 正确的是()A. 从Od边射入的粒子,出射点全部分布在Oa边B. 从aO边射入的粒子,出射点全部分布在ab边C. 从Od边射入的粒子,出射点分布在ab边D. 从ad边射人的粒子,出射点全部通过b点【分析】所有进入磁场的粒子的入射点均在dOb线上,将该曲线垂直速度向上平移一个半径mvr后得到曲线 Oaf,此即所有粒子在磁场中做圆周运动的圆心所在曲线,在该曲线上从下到上qBmv取点作为圆心、r为半径作一系列轨迹圆,其中为从d点射入粒子的轨迹(圆心在 O点),qB为从O点射入粒子的轨迹(圆心在 a点),为从a点射入粒子的轨迹,从 d、O之间入射粒子在磁场中转过1/4圆周后沿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学二年级第一学期班主任工作计划12篇
- 竞选班干部演讲稿范文汇编9篇
- 社会实践活动总结【6篇】
- 行政部个人年终工作总结怎么写
- 车间火灾安全
- 单位统计个人工作总结范例
- 校园安全主题演讲稿集锦15篇
- 出国金融案例分享会
- 奋进新时代争做追梦人征文10篇
- 二年级班先进班集体事迹材料【五篇】
- 【初中生物】脊椎动物-鱼课件2024-2025学年人教版生物七年级上册
- 机械设备售后服务提升方案
- 南京航空航天大学《材料工程基础》2022-2023学年第一学期期末试卷
- PCB设计检查表(评审检查表模板)
- 2024年太阳能发电项目BOT协议
- 警务指挥与战术学总论学习通超星期末考试答案章节答案2024年
- 工程质量培训
- 2024光伏发电工程施工质量验收规程
- 山东省房屋市政工程安全监督机构人员业务能力考试题库-中(多选题)
- 云南省曲靖市高三上学期第一次质量监测数学试题2
- 四年级数学上册 第6章《除法》单元测评必刷卷(北师大版)
评论
0/150
提交评论