带式输送机外文翻译_第1页
带式输送机外文翻译_第2页
带式输送机外文翻译_第3页
免费预览已结束,剩余7页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、输送带的二维动态特性伊 . 基 . 劳德维加克斯, 代尔夫特科技大学,荷1 概要 本文将介绍一种新的皮带输送系统的有限元模型。该模型被开发成能用于 模拟皮带在启动和停止时的纵向和横向动态响应。使项目师能在长距离陆路皮 带输送系统的设计阶段应用该模型,例如,设计适当的皮带输送机曲线检测元 件过早解除皮带张紧轮。这也能使张紧轮间距和凹槽轮廓的设计最优化,以确 保无带运动的共振和确定纵向和横向带振动。应用反馈控制技术实现了启动和 停止程序的优化设计,因而计算皮带的动态特性时可以选择最理想的皮带。2 导言荷兰一直以来被认为是一个运输和转运行业在经济中扮演重要角色的国 家。特别是被称为欧洲的门户的鹿特丹

2、港口,声称拥有世界上最大的海港系 统。除了数量庞大的集装箱,大量的散装货物也都是要通过这个港口的。并非 所有这些物品的目的地都是在荷兰市场,许多要通往其他目的地的货物转运点 都是在鹿特丹港口。有个很好的例子,典型的散装货物的转运 - 煤炭和铁矿 石,很大一部分,其目的地是在德国市场。为了处理大量材料不同地方大范围 的转运,使用了机械运输机,其中就包括带式输送机。长度最长带式输送系统架设在相对较小的国家 - 荷兰,因为它们是主要用 于大量原材料的流动运输。最长的带式输送系统,其长度约为 2 公里长,它位 于鹿特丹港口的一部分 - 马斯弗拉克特,它是用来从批发油库运输大量的煤炭 到电力站。除了国内

3、的项目项目,越来越多的荷兰项目顾问参与到国际中来开 发大型陆路皮带输送系统。代尔夫特科技大学是荷兰其中的一个科技大学,而 机械项目学院的交通技术系就是研究在开发这些系统过程中遇到典型的难点。输送带与散装固体物质之间的相互作用性能,带式输送机结构以及外界环 境都会影响到该输送系统其预定要求达到的合适标准。有些相互作用造成了一 些令人棘手的现象,因而便开始进入研究这些现象造成的实际问题 1 。这 些问题的分类方法之一是,将其根本原因明显涉及到带式输送机的这些问题分 为一类。非平稳移动皮带的瞬态应力减少和设计皮带输送机时规定空载运作引起的 共振,是描述带式输送机的两个最重要的动态因素 2 。本文提出

4、了一种能 模拟程序启动和停止时皮带的纵向和横向响应以及稳定运行时的运动的新的皮 带输送系统有限元模型。模拟皮带输送系统的启动程序,这超出了本文讨论的 结果范围,因此我们将展示一个比较有可行性的模式的例子。3 皮带输送系统的有限元模型如果用来驱动皮带输送系统的总电源,是用德国工业标准 22101 来计算设 计的,然后带假设成一个不可拓展的机构。这意味在带启动和停止时施加在带 上的压力,可从牛顿刚体动力学的理论中推导出来。带最大的延长可以用带应 力计算出来的。这种通过确定皮带弹性反应的方式被称为准静态设计)的方法。对于小型皮带输送系统,这就使得了一个带的设计和运行状态合格。然 而,对于长距离皮带输

5、送系统,这可能变成一个有缺陷的设计,导致维修费用 高,缩短运输机零件的寿命和众所周知的工作问题,如: ?机器的重量牵引位移过大?带的过早崩裂,最主要地引起绞接头的破损 ?破坏托辊和造成皮带张紧轮的重大损害 ?使皮带脱离皮带张紧轮,这可能导致散装原材料的溢出 ?造成 液压动力的)驱动系统的损坏和失灵在许多研究人员开发出的模型中,皮带的弹性反应是被用来计算以确定这 种现象引起的问题。在大多数模型中,包括皮带输送机的有限元模型,也是为 了用来计算在皮带上阻力和压力的变化。皮带的全局弹性反应是由所有零件的 弹性响应组成。这种有限元模型已经应用在计算机软件,它可以用在长距离皮 带输送系统的设计阶段。这就

6、是所谓的动态设计)的方法。模拟结果验证表明,基于这种带模型的软件程序,预测 系统)启动和停止时带的弹性反应是相 当成功,例如见 3 和 4 。上述的有限元模型确定的只是皮带的纵向弹性反应。因此,他们不能准确地 确定出:?托辊和张紧轮上皮带的运动 ?动力驱动的状态?带的阻力弯曲 ?震动)应力波的演变 ?带凹陷与应力波的纵向传播之间的相互作用 ?皮带和托辊之间的相互作用 ?皮带稳定运动时带速的影响?通过托辊 驱动)的皮带上的动态应力。 ?皮带共振的参数对于提升物品时候或由托辊的偏心率引起的振动和皮带的横向 位移的相互关系的影响 ?竖直横向波的发展?由大量散装材料以及在皮带横截面面积的变形所引起的阻

7、力的影响 ?脱离托辊 的带产生的凸 . 凹曲线皮带的横向弹性反应往往是导致长距离皮带输送系统故障的原因,因此应 当加以考虑。需要有 56 中提到的特殊模型,才能确定带的横向响应,但是 要是考虑到特殊因素的 横向)响应,就能更方便地扩展现存的有限元模型。3.1 皮带一个典型的皮带输送机结构组成包括驱动滚筒,尾部托辊,一个垂直向上 提升的带轮,一些托辊和一底盘如图 1 所示。这个结构为例来说明如何有限元 模型的输送带被开发只有带的纵向弹性响应成为主体。因为驱动滚筒和提升带轮之间部分皮带的长度 Ls,与皮带的总长度L相比 是可忽略不计的,只要考虑到提升系统中带轮的质量惯性,这些带轮可以数理 性地看成

8、为一个带轮。因为带从一点到另一点的运动变化中所遇到的阻力,根 据当地精确 维护)的条件和带式输送机的结构,沿着带的长度分布。为了能够 确定带运动中分布应力的影响,皮带被划分为多个不同的有限元素,带上应力 被具体地分配到相对应的元素。如果关心的只是皮带的纵向弹性反应,由带轮 无力量驱动的运动 有滑移的可能),带就会这些地方起不了作用。设计的最后 一步,该模型可以由两股带有驱动特征和张力特性的力量取代带的驱动系统和 张力系统。确切的说,有限元取决于哪些阻力以及在带和其支撑结构之间的相互作用 影响,考虑到这些问题可能与数学描述皮带材料的基本特性有关系。根据这一 解释,其要素可以由一个系统块代表,如图

9、19所示的是弹簧和阻尼,这样的系统给出了一个有限元与节点 C和C + 1 。弹簧K和阻尼H代表带拉伸的粘弹 性状,G代表皮带的可变纵向的结构刚度,是由作用在两个带轮交错的横截面 上垂直的力的所产生,V代表皮带速度取决于阻力的。图1 :五限元综合模型9 。非线性梁架 <构架)元如果只有带的纵向变形是主要素,那么梁架元就可用于模型的皮带弹性反 应。梁架元组成部分有如图2所示的两个结点,P和Q,四个位移参数确定部 分载体X:xT = up vp uq vq(1>对平面运动的梁架元有三个独立的刚体运动,因此 <这公式)仍然是描述一个变 形的参数。图2 :梁架元的精确位移梁架元轴的长度

10、变化,7 :£ 1 = D1(x> =(2>DSO是限元未变形的长度,DS是限元变形的长度,E是沿着有限元轴的无量纲 长度。图3 :张带的静态凹陷虽然带呈弯曲状态,但梁架元并没有变形,这可能考虑到带小数值凹陷的静态影响。静态带凹陷的比率是有定义的 <见图3):K1 = S /1 = q1/8T(3>其中q是暴露在外面带和散装物料的重量在竖直方向上分布的荷载,1是带轮间距,而T是带的张力。,带凹陷的纵向变形影响取决于 7 :& s = 8/3 K2s(4>产生了非线性梁架元总的纵向变形。梁架元图4 :节点的精确位移和旋转的梁架元如果带的横向位移是主

11、要因素,那么梁架元就可以用来模拟皮带。同样对于拥 有六个位移参数的梁架元的平面运动来说,相当于三个独立的刚体运动。因此 就剩下三个变形参数是:纵向变形参数 £ 1,两个弯曲变形参数£ 2和& 3图5 :梁架元的弯曲变形的梁架元弯曲变形的参数可以定义为梁架元的组成载体 <见图4 ):xT = up vp puq vq(_q(5>£ 2 = D2(x> =e2p1pq1o(6>和如图5的变形结构_eq21pq£ 3 = D3(x> =1o3.2绕过托辊及带轮的带运动当绕过托辊或带轮的时候,带运动是受到约束的。为了说明&l

12、t;弄清楚)这些制约因素,影响制约因素 <边界)的条件都必须添加到用来代模拟带的有限元中 来。这可以通过使用多体动力学进行描述。多体机置动力学的经典描述,建立 起由若干约束条件连接起来的刚体或刚性链接。在 <变形)输送带的有限元描述 里,带被分离成多个有限元,有限元之间的联系是可变形的。有限元是由节点 连接的,因此分配了位移参数。要确定带的运动,排除了刚体模型的变形模 式。如果一个带绕过托辊,决定托辊上带的位置 <如见图6)的带长度为E, 被添加到组件矢量,如:式<6),因此产生了 7个位移矢量参数。图6 :由托辊支撑的带梁架元有两个独立的刚体运动,因此依然有五个变形参

13、数存在。其中已经 在3.1中给出了 £ 1 , £ 2和£ 3 ,确定了带的变形。剩下£ 4和£ 5,确定带 和托辊之间的相互作用,见图 7。图7 :两个约束条件的梁架元有限元。这些变形参数可以假设成无限刚度的弹性。这意味着:£ 4 = D4(x> = (rE + u - Eid>e2 = 0£ 5 = D5(x> = (rE + u- rjc>e1 = 0(7>如果模拟的是£ 4 > 0的时候,那么带将脱离托辊,而描述带的有限元上的约 束条件也将去除。3.3滚动阻力为了使一种模

14、型能应用于带式输送机有限元模型的滚动阻力,已经制定了 一种计算滚动阻力的近似公式,8 。带运动中,暴露在带外面的总滚动阻力的组成部分,这三部分是耗能的主要部分,可以区分为包括:压痕滚动阻力,托辊的惯性 加速滚动阻力)和轴承滚动阻力 轴承阻力)。确定滚动阻力 因素的参数包括直径和托辊的材料,以及各种带参数,如速度,宽度,材料,紧张状态,环境温度,带横向负荷,托辊间距和槽角。总滚动阻力的因素,可 以表示成总滚动阻力和带垂直负荷之间的比例,定义为:ft = fi + fa + fb(8>Fi是压痕滚动阻力的系数,FA是加速阻力系数,而 FB是轴承阻力系数。这些组成系数由下面的Fi =9确定:=

15、CFz nzh n hD-nD Vbn vK- nk NTnTMred ?2ufa =_Fzb ?t2(9>fb =Mf_FzbriFZ是带垂直方向上分布的负载和散装物料的负载的总和,H是带的覆盖厚度,D是托辊的直径,Vb是带速,KN是带负荷的名义百分之比,T是环境温度, Mred是托辊的折算质量,B是带的宽度,U是带的纵向位移,MF是总的轴承阻 力矩和RI是轴承内部半径。在计算滚动阻力中,皮带的动力性能及机械性能和 皮带上覆盖的材料发挥着重要作用。这使得带的选择和带上覆盖材料,尽量减 少由动力阻力引起的能源消耗。3.4带驱动系统在稳定性的带运动情况下,为了能够测定带式输送机驱动系统的旋

16、转组件 的影响,这个带式输送机的总模型必须是含有驱动系统模型。驱动系统的旋转 元件,就像一个减速箱,参照了3.2节中所述的约束条件。带有减速比的减速箱,可以用带两个位移参数的减速兀件来代替,卩p和卩q,像一个刚体的旋转)运动,因此就剩下一个变形参数:£ red = Dred(x = iq = 0(10要确定电式扭矩感应式电机,是否适应所谓的两轴式电动机。该相电压的矢量 v可从11)获得:v = Ri + sGi + L ?i/?t(11在11)式中I是相电流矢量,R是模型的相电阻,c是模型的相电感抗,L是 模型的相感系数而s是电机转子的角速度。电磁转矩等于:Tc = iTGi(12&

17、gt;电机模型和驱动系统机械组件是由驱动系统的运动方程联系着的:(13>?2?j?kTi = Iij + Cik Kil?t2?t其中T是扭矩矢量,I是模型的惯量,C是模型的阻尼,K是矩阵刚度和?是电 机旋转轴的角速度。模拟启动或停止程序控制反馈的程序可以添加到带式驱动系统模型中,用 来控制驱动扭矩。3.5运动方程整个带式输送机模型的运动方程可以得出潜在功率的原则,7 :fk - Mkl ?2x1 / ?t2 =(T 1Dik (14>其中F是阻力矢量,M是模型的质量而c是拉格朗日乘数的矢量,可能解释为 双重压力矢量to张力矢量&。为了解决带有X这一组方程,方程一体化是必

18、要的。但是一体化的结果,必须确保满足约束条件。如果(8>式中应变为零,那么必须纠正一体化结果,如见7。可以使用模型的反馈选择,例如限制提 升物质垂直方向上的运动。这种违逆动力学的问题可以用下面公式表示。鉴于 带模型及其驱动系统的提升运动众所周知,根据系统自由度和它的比例<速度)可以确定其他元件的运动。它超出了本文所讨论关于此项的所有细节范围。3.6实例为了在长距离带式输送机系统设计阶段能够正确设计,应用了有限元法。 例如带强度的选择,可以减少的尽量减少,使用模型模拟的结果确定传送带的 最大张力。以有限元模型的功能作为例子,应该考虑到在两个托辊位置范围之 间稳定移动带的横向振动。在运

19、输机的设计阶段这必须被确定,才得以确保空 带的共振。对于皮带输送机的设计来说,托辊和移动带间相互作用影响是很重要的。 托辊的及带轮的几何不完善性,导致带脱离托辊和带轮能支撑的位置,在带和 支撑带轮之间产生一种横向振动。这对带施加了一部分的交互轴向应力。如果 这部分力是比皮带的预应力小,那么带将在它的固有频率中振动,否则带将被 迫振动。皮带是会受迫振动的,例如受托辊的偏心率影响。在输送带返程中, 这种振动特别值得注意。因为受迫振动的频率取决于带轮和托辊的角速度,因 此对于带的速度,确定在带轮和托辊之间,带在自然频率状况下,横向振动中 带速影响,这个是很重要的。如果受迫振动的频率接近于皮带横向振动

20、的固有 频率,将发生共振现象。有限元模型的模拟结果可用于确定稳定移动的带的横向振动频率范围。该 频率是利用快速傅立叶技术从时域范围到频域范围,带横向位移变换后得到的 结果。除了使用有限元模型外也可以运用近似分析法。皮带可以模拟成一个预应力梁。如果皮带的弯曲硬度可以被忽略,横向位 移比托辊间距还小,Ks << 1 ,并且带增加的长度相对于横向位移的原始长度 来说是微不足道,带的横向振动可近似为下列线性微分方程,如见图15 :(15>?2V= (c22 - C2b> ?2V- 2Vb ?2v?t2?x2 ?x?t其中V是皮带的横向位移和C2是横向波的波速度,由<16)

21、式定义:c2 = V g1/8Ks(16>首先,图5中带的横向固有频率范围可从公式<16)获得,如果假定v(O,t>=v(l,t>=01fb = c2 (1 - ? 2>(17>21?是无量纲的速比,由<18)式确定:? = Vb / c2(18>FB是不同带的各自独立的频率范围,因为输送带长度方向上带张力变化。托辊 的受迫振动频率,使托辊产生了一个偏心率等于:fi = Vb / n D(19>其中D是托辊的直径。为了设计一个在托辊间距中无支撑的共振,这受到以下 条件限制:nDL (1-?2>(20>由线性微分方程<16)

22、所取得的成果不过是只适用于小数值的速比?。对于大数值的速比?来说,如高速运输机或低的带张力,在 <16)式中所有非线性条 件就显得重要的。因此,数值模拟的运用,有限元模型的开发,都是为了确定 带横向振动线性和非线性频率之间的比例范围。这些关系已被确定适合不同的 数值的?,例如说一个功能凹陷的比率 Kso使用快速傅里叶技术将横向位移结果的转化为频谱。从这些频谱中获得的 频率与公式<18)获得的频率相比,其产生了图 8所显示的曲线。从这一数字可 见,对小于0.3的?来说,计算误差很小。对于大数值的 ?来说,运用线性近 似值法产生的计算误差达到10 %以上。运用了皮带采用非线性梁架元的有

23、限元模型,因此可以准确地确定大数值 ?的横向振动。对于小数值?的横向振动的频率也可以用公式<18)准确地预测。然而,它 不能分析,例如带凹陷和纵向波的传播之间的相互作用,或者同样可以看成有 限元模型的脱离托辊的皮带。这决定带应力和横向振动频率之间的关系可以用于皮带张力监测系统。 图8 :由两个托辊支撑的带的横向振动线性和非线性频率之间的比例。4实验验证为了使模拟的结果能够得到验证,实验中使用了动态实验设备,如图9所示o图9 :动态实验设施使用这实验设施能够确定的两个托辊的间距和卸荷扁带的横向振动,例如 返程部分的。声音装置是用来测量皮带的位移。此外,还有在实验中为我们所 知的张紧力,带速

24、,电机转矩,托辊转子与托辊的距离。5为例因为最具有成本效益带式输送机的操作条件中出现了宽度范围为 0.6m- 1.2m 2 的各种皮带 ,可通过变换不同的带速改变带的输送能力,。然而在 带速度被改变之前,应确定带和托辊之间的相互作用,以确保无支撑的带的共 振。为了说明稳定移动的带的横向位移这一点,测量了两个托辊的间隔。带的 总长度L是52.7m,托辊间距I是3.66m,静态凹陷的比例常数是 2.1 % ,? 为0.24而带速Vb为3.57m/ s 。这个信号的后期转化由如图 5 所示的快速傅里叶技术频谱获得。在图 5 中 出现了 3个频率。第一频率是由带结合处所引起的:fs = Vb/L =

25、0.067 Hz第二个频率,出现在 1.94 赫兹,是由皮带的横向振动所造成的。图 10 :带稳定移动时横向振动频率第三个频率出现在10.5Hz,是由托辊的旋转所造成的,从图11所示的数值模拟获得。图 11 :计算共振区的不同托辊的直径 D.贯穿实验表明皮带速度和托辊间距。图 11 显示的是拖过带与托辊互动引起的共振区可以预测三个托辊的直径。该带 式输送机的托辊直径为0.108M,从而可以预测皮带速度邻近 0.64M/S的共振现 象。为了验证结果,在启动运输机的时候测量了带的最大横向位移跨度。图 12 :测量横向振动和带静态凹陷幅度的标准差的比例。在图12中,可以看出横向振动的最大振幅发生在带

26、速为0.64M/S处,正如有限元模型模拟预测的结果一样。因此,带速度不应选择临近 0.64M/ s 的。虽 然是用扁带进行实验和理论的验证的,但是这种应用技术也可运用于槽型带 中。6结论带式输送机有限元模型中梁架元的应用,带横向位移的模拟,从而使能够 设计出带无支撑的共振。对于小数值的 ? 来说,采用梁架元代替线性微分方程 预测共振现象的优势是同样可以预测到皮带纵向和横向位移的之间的相互作用 以及从模拟中预见皮带脱离托辊。7参考文献1. Lodewijks, G. (1995>, "Present Research at Delft University of Technolo

27、gy, The Netherlands", 1995 5th International Conference on Bulk Material Storage, Handling and transportation, Newcastle, Australia, 10-12 July 1995, The Institution of Engineers, Australia Preprints pp. 381-394.2. Roberts, A.W. (1994>, "Advances in the design of MechanicalConveyors", Bulk Solids Handling 14, pp. 255-281.3. Nordell, L.K. and Ciozda, Z.P. (1984>, "Transient belt stresses during starting and stopping: Elastic responsesimulated by finite element methods", Bulk Solids Handling 4, pp. 99-104.4. Fu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论