浙江11市02-13中考数学分类解析 专题07:线动问题_第1页
浙江11市02-13中考数学分类解析 专题07:线动问题_第2页
浙江11市02-13中考数学分类解析 专题07:线动问题_第3页
浙江11市02-13中考数学分类解析 专题07:线动问题_第4页
浙江11市02-13中考数学分类解析 专题07:线动问题_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题7:线动问题一、选择题1.(2006年浙江宁波课标卷3分)如图,直角梯形ABCD中,ADBC,ABBC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则ADE的面积是【 】A1 B2 C3 D42.(2006年浙江湖州3分)已知二次函数(1b1),当b从1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。下列关于抛物线的移动方向的描述中,正确的是【 】A、先往左上方移动,再往左下方移动;B、先往左下方移动,再往左上方移动;C、先往右上方移动,再往右下方移动;D、先往右下方移动,再往右上方移动3.(2007年浙江衢州4分)如图,已知直线l的解析式是 ,

2、并且与x轴、y轴分别交于A、B两点。一个半径为1.5的C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当C与直线l相切时,则该圆运动的时间为【 】A.3秒或6秒 B.6秒 C.3秒 D.6秒或16秒4.(2008年浙江湖州3分)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为【 】A(a,b)B(a,b)C(b, a)D( b, a)二、填空题1.(2008年浙江台州5分)善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中用数量关系描述图形性质

3、和用图形描述数量关系,往往会有新的发现小明在研究垂直于直径的弦的性质过程中(如图,直径AB弦CD于E),设AE=x,BE=y,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式 2.(2009年浙江宁波3分)如图,A、B的圆心A、B在直线l上,两圆半径都为1cm,开始时圆心距AB=4cm,现A、B同时沿直线l以每秒2cm的速度相向移动,则当两圆相切时,A运动的时间为 秒3.(2010年浙江宁波3分)如图,已知P的半径为2,圆心P在抛物线上运动,当P与轴相切时,圆心P的坐标为

4、。三、解答题1.(2002年浙江湖州12分)如图,已知P、A、B是x轴上的三点,点A的坐标为(1,0),点B的坐标为(3,0),且PA:AB=1:2,以AB为直径画M交y轴的正半轴于点C(1)求证:PC是M的切线;(2)在x轴上是否存在这样的点Q,使得直线QC与过A、C、B三点的抛物线只有一个交点?若存在,求点Q的坐标;若不存在,请说明理由;(3)画N,使得圆心N在x轴的负半轴上,N与M外切、且与直线PC相切于D问将过A、C、B三点的抛物线平移后能否同时经过P、D、A三点,为什么?【答案】解 :(1)证明:连接MC,2.(2003年浙江宁波6分)已知:如图,ABC中,AB=BC=CA=6,BC

5、在x轴上,BC边上的高线AO在y轴上,直线l绕A点转动(与线段BC没有交点)设与AB、l、x轴相切的O1的半径为r1,与AC、l、x轴相切的O2的半径为r2 (1)当直线l绕点A转动到何位置时,O1、O2的面积之和最小,为什么?(2)若r1r2=,求图象经过点Ol、O2的一次函数解析式 3.(2004年浙江宁波12分)已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A、B重合),PQAB,垂足为P,交半圆O于Q;PB是半圆O1的直径,O2与半圆O、半圆O1及PQ都相切,切点分别为M、N、C(1)当P点与O点重合时(如图1),求O2的半径r;(2)当P点在AB上移动时(如图2),设

6、PQ=x,O2的半径r求r与x的函数关系式,并求出r的取值范围【答案】解:(1)连接OO2、O1O2、O2C,作O2DAB于D, 4.(2004年浙江金华14分)如图在平面直角坐标系内,点A与C的坐标分别为(4,8),(0,5),过点A作ABx轴于点B,过OB上的动点D作直线平行于AC,与AB相交于点E,连结CD,过点E作直线EFCD,交AC于点F。(1)求经过点A,C两点的直线解析式;(2)当点D在OB上移动时,能否使四边形CDEF成为矩形?若能,求出此时k、b的值;若不能,请说明理由;(3)如果将直线AC作向上下平移,交Y轴于点C,交AB于点A,连结DC,过点E作EFDC,交AC于点F,那

7、么能否使四边形CDEF成为正方形?若能,请求出此时正方形的面积;若不能,请说明理由。 5.(2004年浙江丽水12分)已知O1与O2相切于点P,它们的半径分别为R、r一直线绕P点旋转,与O1、O2分别交于点A、B(点P、B不重合),探索规律:(1)如图1,当O1与O2外切时,探求 与半径R、r之间的关系式,请证明你的结论;(2)如图2,当O1与O2内切时,第(1)题探求的结论是否成立?为什么?【答案】解:(1)当O1与O2外切时,。证明如下:6.(2005年浙江舟山、嘉兴14分)有一种汽车用“千斤顶”,它由4根连杆组成菱形ABCD,当螺旋装置顺时针旋转时,B、D两点的距离变大,从而顶起汽车。若

8、AB=30,螺旋装置每顺时针旋转1圈,BD的长就减少1。设BD=a,AC=h,(1)当a=40 时,求h 值;(2)从a=40开始,设螺旋装置顺时针方向旋转x圈,求h关于x的函数解析式;(3)从a=40开始,螺旋装置顺时针方向连续旋转2圈,设第1圈使“千斤顶”增高s1,第2圈使“千斤顶”增高s2,试判定s1与s2的大小,并说明理由。若将条件“从a=40开始”改为“从某一时刻开始”,则结果如何?为什么?【答案】解:(1)连接AC交BD于O,(3)此问首先要搞清楚增高的s是指AC增高了s,根据第2问的函数关系进行推算,就可知道s1与s2的大小关系。7.(2008年浙江丽水14分)如图,在平面直角坐

9、标系中,已知点A坐标为(2,4),直线与轴相交于点B,连结OA,抛物线从点O沿OA方向平移,与直线交于点P,顶点M到A点时停止移动(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,用m的代数式表示点P的坐标;当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使QMA的面积与PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由8.(2009年浙江绍兴14分)定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点(1)如图1,若F1:,经过变换后,得到

10、F2:,点C的坐标为(2,0),则:b的值等于 ;四边形ABCD为【 】A、平行四边形;B、矩形;C、菱形;D、正方形(2)如图2,若F1:,经过变换后,点B的坐标为(2,c1),求ABD的面积;(3)如图3,若F1:,经过变换后,AC=2 ,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值9.(2009年浙江舟山、嘉兴14分)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB1以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设AB=x(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大

11、面积?【答案】解:(1)在ABC中,AC=1,AB=x,BC=3x, 10.(2009年浙江金华12分)如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90o,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).(1)当t=4时,求直线AB的解析式;(2)当t>0时,用含t的代数式表示点C的坐标及ABC的面积;(3)是否存在点B,使ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由.【考点】一次函数综合题,线动旋转问题,待定系数法,直线上点的坐标与方程的关系,

12、相似三角形的判11.(2009年浙江衢州12分)如图,已知点A(4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由12.(2009年浙江台州14分)如图,已知直线 交坐标轴于A,B两点,以线段AB为边向

13、上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E(1)请直接写出点C,D的坐标;(2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时D停止,求抛物线上C,E两点间的抛物线弧所扫过的面积。当点D运动到x轴上时,t=3,当2t3时,如图3,。13.(2010年浙江绍兴14分)如图,设抛物线C1:,C2:,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是2(1)求a的值及点

14、B的坐标;(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG记过C2顶点M的直线为l,且l与x轴交于点N若l过DHG的顶点G,点D的坐标为(1,2),求点N的横坐标;若l与DHG的边DG相交,求点N的横坐标的取值范围14.(2010年浙江湖州12分)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OAAB2,OC3,过点B作BDBC,交OA于点D将DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设

15、BEF与BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值 15.(2010年浙江金华12分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速度分别为1,2 (长度单位/秒)一直尺的上边缘l从x轴的位置开始以 (长度单位/秒)的速度向上平行移动(即移动过程中保持lx轴),且分别与OB,AB交于E,F两点设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动请解答下列问题:(1)过A,B两点

16、的直线解析式是 ;(2)当t4时,点P的坐标为 ;当t ,点P与点E重合; (3) 作点P关于直线EF的对称点P. 在运动过程中,若形成的四边形PEPF为菱形,则t的值是多少? 当t=2时,是否存在着点Q,使得FEQ BEP ?若存在, 求出点Q的坐标;若不存在,请说明理由 。y16.(2010年浙江衢州、丽水12分)ABC中,A=B=30°,AB=把ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),ABC可以绕点O作任意角度的旋转(1)当点B在第一象限,纵坐标是时,求点B的横坐标;(2)如果抛物线(a0)的对称轴经过点C,请你探究:当时,A,B两点是否都在这条抛物线上

17、?并说明理由;设b=2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由17.(2011年浙江衢州12分)已知两直线l1,l2分别经过点A(1,0),点B(3,0),并且当两直线同时相交于正半轴的点C时,恰好有l1l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线l1,抛物线,直线l2和轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使MCK为等腰三角形的点M,简述理由,并写出点M的坐标18.(2012年浙江金华、丽水10分)在直角坐标系中,点A是抛物线yx2在第二象限上的点,连接OA,过点O作OBOA,交抛物线于点B,以OA、OB为边构造矩形AOBC(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论