版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2013年东北三省四市教研协作体等值诊断联合考试数学(理科)本试卷分第卷(选择题)和第卷(非选择题)两部分,满分150分.考试时间为120分钟,其中第卷22题24题为选考题,其它题为必考题.考试结束后,将试卷和答题卡一并交回.注意事项:1 答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2 选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4 保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀.第卷(选择题,共6
2、0分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1. 不等式组表示的平面区域是ABCD2. 已知复数,且为实数,则A. B. C. D. 3. 已知,则的值为A. B. C. D. 4. 执行如图所示的程序框图,若输出的,则输入的整数的最大值为A. 7B. 15C. 31D. 635. 已知是平面向量,下列命题中真命题的个数是 A. 1B. 2 C. 3D. 46. 已知函数的图像关于直线对称,则实数的值为A. B. C.D.7. 一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为A.
3、 B. C. D. 8. 已知数列满足,则A. 143B. 156C. 168D. 1959. 在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为A. B. C. D. 10. 已知抛物线的焦点为,直线与此抛物线相交于两点,则A. B.C. D. 11. 如图所示是一个几何体的三视图,则该几何体的体积为A. B. C. D. 12. 已知两条直线和 (其中),与函数的图像从左至右相交于点,与函数的图像从左至右相交于点,.记线段和在轴上的投影长度分别为.当变化时,的最小值为A. B. C. D. 第
4、卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题21题为必考题,每个试题考生都必须作答,第22题24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. _.14. 用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为_.15. 双曲线的左、右焦点分别为和,左、右顶点分别为和,过焦点与轴垂直的直线和双曲线的一个交点为,若是和的等比中项,则该双曲线的离心率为 .16. 设集合, ,若,则实数的取值范围是_. 三、解答题(本大题包括6小题,共70分,解答应写出文字说
5、明,证明过程或演算步骤).17. (本小题满分12分)在三角形中,. 求角的大小; 若,且,求的面积. 18. (本小题满分12分)2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示. 求该小区居民用电量的中位数与平均数; 利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率; 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连
6、续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.19. (本小题满分12分)如图,是矩形中边上的点,为边的中点,现将沿边折至位置,且平面平面. 求证:平面平面; 求二面角的大小. 20. (本小题满分12分)如图,曲线与曲线相交于、四个点. 求的取值范围; 求四边形的面积的最大值及此时对角线与的交点坐标.21. (本小题满分12分) 已知函数. 求函数的单调区间; 如果对于任意的,总成立,求实数的取值范围; 设函数,. 过点作函数图像的所有切线,令各切点的横坐标构成数列,求数列的所有项之和的值.请考生在22、23、24三题中
7、任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修41:几何证明选讲. 如图,是的直径,弦与垂直,并与相交于点,点为弦上异于点的任意一点,连结、并延长交于点、. 求证:、四点共圆; 求证:. 23. (本小题满分10分)选修44:坐标系与参数方程选讲.在直角坐标系中,曲线的参数方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. 求曲线的普通方程和曲线的直角坐标方程; 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.24. (本小题满分10分)选修45:不等式选讲.设函数, 求不等式的解集; 如果关于的不等式在上恒成立,求实数的取值范围
8、2013年东北三省四市教研协作体等值诊断联合考试2013年长春市高中毕业班第三次调研测试数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.B 2 .C 3. A 4. B 5.A 6.B 7.A 8.C 9.D 10.A 11.B 12.C简答与提示:1. 【命题意图】本小题主要考查二元一次不等式组所表示的区域,是线性规划的一种简单应用,对学生的数形结合思想提出一定要求.【试题解析】B 表示直线以及该直线下方的区域,表示直线的上方区域,故选B.2. 【命题意图】本小题主要考查复数的基本运算,特别是共轭复数的乘法运算以及对共轭复数的基本性质的考查,对考生的运
9、算求解能力有一定要求.【试题解析】C由为实数,且,所以可知,则,故选C.3. 【命题意图】本小题主要考查同角三角函数的基本关系式以及倍角的余弦公式的应用,对学生的化归与转化思想以及运算求解能力提出一定要求.【试题解析】A由,得,故选A. 4. 【命题意图】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析.【试题解析】B由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B. 5. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A由平面向量的
10、基础知识可知均不正确,只有正确,故选A.6. 【命题意图】本题着重考查三角函数基础知识的应用,对于三角函数的对称性也作出较高要求. 本小题同时也考查考生的运算求解能力与考生的数形结合思想.【试题解析】B由函数的图像关于直线对称,可知,可求得. 故选B.7. 【命题意图】本小题主要考查立体几何中球与球的内接几何体中基本量的关系,以及球表面积公式的应用,本考点是近年来高考中的热点问题,同时此类问题对学生的运算求解能力、空间想象能力也提出较高要求.【试题解析】A如图:设、为棱柱两底面的中心,球心为的中点. 又直三棱柱的棱长为,可知,所以,因此该直三棱柱外接球的表面积为,故选A. 8. 【命题意图】本
11、小题主要考查数列的递推问题,以及等差数列的通项公式,也同时考查学生利用构造思想解决问题的能力以及学生的推理论证能力.【试题解析】C由,可知,即,故数列是公差为1的等差数列,所以,则. 故选C.9. 【命题意图】本小题主要考查均匀随机数的意义与简单应用,对于不同尺度下点与点的对应方式也做出一定要求. 本题着重考查考生数据处理的能力,与归一化的数学思想.【试题解析】D.由于, ,而,所以坐标变换公式为,. 故选D.10. 【命题意图】本小题是定值问题,考查抛物线的定义与基本性质及过焦点的弦的性质. 本题不但对考生的运算求解能力、推理论证能力有较高要求,而且对考生的化归与转化的数学思想也有较高要求.
12、【试题解析】A设,由题意可知,则,联立直线与抛物线方程消去得,可知,故. 故选A. 11. 【命题意图】本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式.【试题解析】B由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此. 故选B. 12. 【命题意图】本小题主要考查函数的图像与性质,对于函数图像的翻折变换以及基本不等式的应用都有考查,本题是函数与不等式的综合题,考查较为全面,难度系数较高,是一道区分度较好、综合性较强的题目. 同时对考生的推理论证能力与运算求解能力都有较高要求.【试题解析】C 设,则,则
13、,分子与分母同乘以可得,又,当且仅当,即时,“=”成立,所以的最小值为. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13. 14. 815. 16. 简答与提示:13. 【命题意图】本小题主要考查积分的定义与牛顿莱布尼茨公式在解决定积分问题上的应用. 主要考查学生的运算求解能力,难度较低,解决方法常规.【试题解析】.14. 【命题意图】本小题主要考查学生对排列组合问题基本方法的掌握与应用,同时对考生解决此类问题的策略作出考查.同时也对考生的应用意识与创新意识有一定要求.【试题解析】种.15. 【命题意图】本小题主要考查双曲线中各基本量间的关系,特别是考查通径长度的应用以及相关
14、的计算,同时也对等比中项问题作出了一定要求.本题主要考查学生的运算求解能力、推理论证能力,以及数形结合思想.【试题解析】由题意可知,即,经化简可得,则.16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求.【试题解析】由题可知,集合表示圆上点的集合,集合表示圆上点的集合,集合表示曲线上点的集合,此三集合所表示的曲线的中心都在处,集合、表示圆,集合则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得的取值范围是. 三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本题针对三角变换公式
15、以及解三角形进行考查,主要涉及三角恒等变换,正、余弦定理等内容,对学生的逻辑思维能力提出较高要求.【试题解析】解:(1) 由题,则,化简得,(2分)即,所以,(4分)从而,故.(6分)(2) 由,可得.所以或. (7分)当时,,则,; (8分)当时,由正弦定理得.所以由,可知. (10分)所以. (11分) 综上可知 (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识,其中包括中位数与平均数的求法、基本概率的应用以及离散型随机变量的二项分布的数学期望与方差的求法. 本题主要考查学生的数据处理能力.【试题解析】解:(1) 因为在频率分布直方图上,中位数的两边面积
16、相等,可得中位数为155. (2分)平均数为 .(4分)(2) 由频率分布直方图可知,采用分层抽样抽取10户居民,其中8户为第一类用户,2户为第二类用户,则从该10户居民中抽取2户居民且这两户居民用电资费不属于同一类型的概率为.(8分)(3) 由题可知,该小区内第一类用电户占80%,则每月从该小区内随机抽取1户居民,是第一类居民的概率为0.8,则连续10个月抽取,获奖人数的数学期望,方差. (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面、面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高
17、要求.【试题解析】解:(1) 证明:由题可知,(3分)(6分)(2) 以为原点,以方向为轴,以方向为轴,以过点平面向上的法线方向为轴,建立坐标系. (7分)则,(9分), (11分)综上二面角大小为. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到直线与圆锥曲线的相关知识以及圆锥曲线中极值的求取. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 联立曲线消去可得,根据条件可得,解得.(4分)(2) 设,则.(6分)令,则,(7分)设,则令,可得当时,的最大值为,从而的最大值为16. 此时,即,则.(9分)
18、联立曲线的方程消去并整理得,解得,所以点坐标为,点坐标为,则直线的方程为, (11分)当时,由对称性可知与的交点在轴上,即对角线与交点坐标为. (12分)21. 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述函数的单调性、极值以及函数零点的情况. 本小题主要考查考生分类讨论思想的应用,对考生的逻辑推理能力与运算求解有较高要求. 【试题解析】解 (1) 由于,所以.(2分)当,即时,;当,即时,.所以的单调递增区间为,单调递减区间为.(4分)(2) 令,要使总成立,只需时.对求导得,令,则,()所以在上为增函数,所以.(6分)对分类讨论: 当时,恒成立,所以在上为增函数,所以,即恒成立; 当时,在上有实根,因为在上为增函数,所以当时,所以,不符合题意; 当时,恒成立,所以在上为减函数,则,不符合题意. 综合可得,所求的实数的取值范围是.(9分)(3) 因为,所以,设切点坐标为,则斜率为,切线方程为, (10分)将的坐标代入切线方程,得,即,令,则这两个函数的图像均关于点对称,它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眼镜配送司机招聘合同协议书
- 木结构房屋定制合同
- 建筑供声能施工合同副本
- 网络安全合作协议书
- 医药供应链保证金
- 国际婚庆设备租赁合同
- 休闲娱乐场所租赁招标
- 服装加工招投标函模板
- 八年级道德与法治开学摸底考试卷(广州专用)(考试版)【测试范围:八年级上册】A4版
- 体弱儿医疗资源整合
- 新华保险的培训心得
- 茎的形态结构与功能
- 第一讲 中国传统艺术之书法
- 2023版个人征信模板简版(可编辑-带水印)
- 2023年四川省成都市青羊区一诊数学试题(学生版、解析版)
- 泵与泵站(水20)学习通课后章节答案期末考试题库2023年
- 固定资产闲置处置方案
- 新媒体时代下的舆情引导
- 个人课题结题总结报告PPT模板下载
- 直流电动机工作原理 名师获奖
- 防静电安全知识员工培训
评论
0/150
提交评论