版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算 【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘, 把它们的系数,相同字母分别相乘, 对于只在一个单项式里含有 的字母,则连同它们的指数作为积的一个因式要点诠释:(1) 单项式的乘法法则的实质是乘法的交换律和同底数幕的乘法法则的综合应用.(2) 单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系 数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相 冋字母相乘,是冋底数幕的乘法,按照“底数不
2、变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3) 运算的结果仍为单项式, 也是由系数、字母、字母的指数这三部分组成.(4) 三个或三个以上的单项式相乘冋样适用以上法则要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加即 m(a b c) ma mb me.要点诠释:(1) 单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为 多个单项式乘单项式的问题 .(2) 单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3) 计算的过程中要注意符号问题,多项式中的每一项包括它前
3、面的符号,冋时还要注意单项式的符号 .(4) 对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即 a b m n am an bm bn.要点诠释:多项式与多项式相乘,仍得多项式 .在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:xaxb x2a b x ab.【典型例题】类型一、单项式与单项式相乘1、计算:2 1 2(1) 3aba b 2abc ;3(2) ( 2xn
4、 1yn) ( 3xy)- x2z ;223122(3) 6m n (x y) mn (y x).【思路点拨】 前两个题只要按单项式乘法法则运算即可,第(3)题应把x y与y x分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算.【答案与解析】1解:(1) 3ab2a2b 2abc31 2 232 (a a a)(b b b)c32a b c.(2) ( 2xn 1yn) ( 3xy)1 x2z21n 12 n(2) (3)(x xx )(y y)zn 4 n 13x y z.23122(3) 6m n (x y) mn (y x)3231226m n (x y) mn (x
5、 y)312232(6) 3 (m m)(n n )(x y) (x y)2m3n3(x y)5.【总结升华】 凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉.举一反三:212 3【变式】(2014?甘肃模拟)计算:2m? (- 2mr) ? (- mn ).2【答案】 解:2m? (- 2mn ?(-丄mn3)222 3=2 x( - 2)x( _) (m x mnKm n )254=2mn .类型二、单项式与多项式相乘(3)ab 0.6b42a b3ab3b252a4b24a2b23ab2b22b24a3b33-a2b4.5(1) -ab 2ab2 2ab 4b ;233(2)
6、13xy3 2 尹x2 (6xy2);(3)3 2aab 0.6b24 22a b ;23【答案与解析】解: (1)1 ab2 h2 ab2ab4 b2331ab2 .2 ab1ab ( 2ab)丄ab4b232231 Z 3 a ba2b22 .2 ab33(2)1 xy33 2 尹x2 (6xy2)1 xy(6xy2)3 y2 2g( 6xy )(x2)(6xy2)32c 2 32x y小4329xy 6x y .【总结升华】 计算时,符号的确定是关键,可把单项式前和多项式前的“ + ”或“-”号看 作性质符号,把单项式乘以多项式的结果用“ + ”号连结,最后写成省略加号的代数和.举一反三
7、:【变式1】2m2n(6m4n)【答案】解:原式12m2 n2m2 4n212m2n2m6 n212m2 n 7 m6 n24【变式2】若n为自然数,试说明整式n 2n2n n1的值一定是3的倍数.【答案】解:n 2n 1 2n n 1 = 2n2 n2n22n3n因为3n能被3整除,所以整式n2n 12n的值一定是3的倍数.类型三、多项式与多项式相乘3、计算:(1)(3a2b)(4a 5b);(2)(x1)(x 1)(x21);(3)(ab)(a 2b)(a 2b)(ab);(4)25x(x 2x 1)(2x 3)( x5).【答案与解析】解:(1)(3a22b)(4a 5b)12a 15a
8、b8ab2 2 210b12a 7ab 10b .(2)(x1)(x 1)(x21) (x2xx 1)(x41) x 1 .(3)(ab)(a 2b)(a 2b)(ab)(a2ab 2b2) (a2 ab 2b2)2 a2 2 2ab 2b a ab 2b(4)25x(x 2x 1)(2x 3)( x5)(5x32210x5x)(2x 7x15)5x310x2 5x2x2 7x152ab.5x3 8x212x 15 .【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.4、(2014 秋?花垣县期末)解方程:(x+7) (x+5)-( x+1) (x+5) =42.【思路点拨】 先算乘法,再合并同类项,移项,系数化成1即可.【答案与解析】解:(x+7) ( x+5)-( x+1) (x+5) =42,2 , 2 、x +12x+35 -( x +6x+5) =42,6x+30=42,6x=12,x=2.【总结升华】本题考查了解一元一次方程,多项式乘以多项式的应用,主要考查学生的计算 能力,难度适中.举一反三:【变式】求出使(3x 2)(3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024重金属污染土壤修复剂
- 《医用物理学》超长详细笔记
- 强调工作重要性的排比句50例
- 2024年自然科学研究与试验发展服务项目资金需求报告代可行性研究报告
- 2024年眼用抗感染药项目资金申请报告
- 2024年甲醇制烯烃项目资金需求报告代可行性研究报告
- 起重机械钢结构冷喷烯锌防护涂装技术指南-意见征求稿
- Python程序设计实践- 习题及答案 ch19 实验15 数据可视化
- 护理措施及护理问题
- 模范人物敬业奉献事迹材料范文5篇
- 2024年巴黎奥运会
- NB-T+10488-2021水电工程砂石加工系统设计规范
- 青年你为什么要入团-团员教育主题班会-热点主题班会课件
- 2024年畜禽屠宰企业兽医卫生检验人员考试试题
- 公路工程施工图审查管理办法
- 幼儿园园本教研的途径与方法
- 《认识水果蔬菜》ppt课件
- 典型草原割草场技术规范-编制说明-内蒙古
- 阿坝藏族羌族自治州羌族文化生态保护实验区实施方案 - 阿坝州羌族
- 精细化工——洗涤剂的合成PPT课件
- 最新Tcpdump格式文件分析
评论
0/150
提交评论