版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二元一次方程组解应用题列方程解应用题的基本关系量( 1)行程问题:速度×时间=路程顺水速度 =静水速度水流速度逆水速度=静水速度水流速度( 2) 工程问题:工作效率×工作时间 =工作量( 3) 浓度问题:溶液×浓度 =溶质( 4) 银行利率问题:免税利息 =本金×利率×时间二元一次方程组解决实际问题的基本步骤1、 审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2、 考虑如何根据等量关系设元,列出方程组(设未知数,列方程组)3、列出方程组并求解,得到答案(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意(检验
2、 ,答)列方程组解应用题的常见题型( 1) 和差倍总分问题:较大量 =较小量 +多余量,总量 =倍数×倍量( 2) 产品配套问题:加工总量成比例( 3) 速度问题:速度×时间 =路程( 4) 航速问题:此类问题分为水中航速和风中航速两类1 顺流(风):航速 =静水(无风)中的速度+水(风)速2 逆流(风):航速 =静水(无风)中的速度-水(风)速( 5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题( 6) 增长率问题:原量×( 1增长率) =增长后的量,原量×( 1减少率) =减少后
3、的量( 7) 浓度问题:溶液×浓度 =溶质( 8) 银行利率问题:免税利息 =本金×利率×时间,税后利息 =本金×利率×时间本金×利率×时间×税率( 9) 利润问题:利润 =售价进价,利润率 =(售价进价)÷进价× 100%( 10) 盈亏问题:关键从盈(过剩) 、亏(不足)两个角度把握事物的总量( 11) 数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示( 12) 几何问题:必须掌握几何图形的性质、周长、面积等计算公式( 13) 年龄问题:抓住人与人的岁数是同时增长的讲解:(
4、分配调运问题) 某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9 人到乙厂,则两厂的人数相同;如果从乙厂抽 5 人到甲厂,则甲厂的人数是乙厂的2 倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x 人,到乙工厂的人数为y 人题中的两个相等关系:1、抽 9 人后到甲工厂的人数=到乙工厂的人数可列方程为: x- 9=2、抽 5 人后到甲工厂的人数=可列方程为:(金融分配问题) 小华买了10 分与 20 分的邮票共解;设共买x 枚 10 分邮票, y 枚 20 分邮票16 枚,花了2 元 5角,问10 分与20 分的邮票各买了多小?题中的两个相等关系:1、 10 分邮票的枚数+20分邮票的枚数=
5、总枚数可列方程为:2、 10 分邮票的总价+=全部邮票的总价可列方程为: 10X+(做工分配问题) 小兰在玩具工厂劳动,做4 个小狗、 7 个小汽车用去去 3 小时 37 分,平均做1 个小狗、 1 个小汽车各用多少时间?题中的两个相等关系:1、做 4 个小狗的时间+=3 小时 42 分,做=3时42分5 个小狗、6 个小汽车用可列方程为:2、+做 6 个小汽车的时间=3 时 37 分可列方程为:(行程问题) 甲、乙二人相距6km ,二人同向而行,甲3 小时可追上乙;相向而行,度各是多少?解:设甲每小时走x 千米,乙每小时走y 千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程 +1 小
6、时相遇。二人的平均速可列方程为:2、相向而行:甲的路程+=可列方程为:(倍数问题) 某市现有42 万人口,计划一年后城镇人口增加0.8,农村人口增加工厂1.1 , 这样全市人口将增加 1,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有题中的两个相等关系:1、现在城镇人口+可列方程为:2、明年增加后的城镇人口+可列方程为:( 1+0.8 ) x+x 万人,农村人口有y 万人=现在全市总人口=明年全市总人口=(分配问题) 某幼儿园分萍果, 若每人 3 个,则剩 2 个,若每人 4 个,则有一个少 1 个,问幼儿园有几个小朋友?解:设幼儿园有 x 个小朋友,萍果有 y 个题中的两个相等
7、关系:1、萍果总数 =每人分 3 个 +可列方程为:2、萍果总数 =可列方程为:(浓度分配问题) 要配浓度是45%的盐水 12 千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x 千克,含盐85%的盐水有y 千克。题中的两个相等关系:1、含盐 10%的盐水中盐的重量+含盐 85%的盐水中盐的重量=可列方程为:10%x+=2、含盐10%的盐水重量+含盐85%的盐水重量=可列方程为:x+y=(金融分配问题) 需要用多少每千克售4.2 元的糖果才能与每千克售3.4 元的糖果混合成每千克售糖 200 千克?解:设每千克售4.2 元的糖果为x 千克,每千克售3.4 元的
8、糖果为y 千克题中的两个相等关系:1、每千克售4.2 元的糖果销售总价+=可列方程为:3.6 元的杂拌2、每千克售4.2 元的糖果重量+可列方程为:(几何分配问题) 如图:用8 块相同的长方形拼成一个宽为多少?解:设小长方形的长是x 厘米,宽是y 厘米=48 厘米的大长方形,每块小长方形的长和宽分别是题中的两个相等关系1、小长方形的长+:=大长方形的宽可列方程为:2、小长方形的长=可列方程为:(材料分配问题) 一张桌子由桌面和四条脚组成,1 立方米的木材可制成桌面50 张或制作桌脚300 条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?解:设有题中的两个相等关系: 1、制作桌面
9、的木材+可列方程为:2、所有桌面的总数:所有桌脚的总数可列方程为:=(和差倍问题) 一个两位数, 十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y。题中的两个相等关系:1、个位数字 =-52可列方程为:、新两位数可列方程为:=(分配调运) 一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5 辆甲种货车和6 辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?解:设题中的两个相等关系:1、第一次:甲货车运的货物重
10、量+=36可列方程为:2、第二次:甲货车运的货物重量+=26可列方程为:再探实际问题与二元一次方程组应用题检测知能点分类训练知能点 11、班上有男女同学32 人,女生人数的一半比男生总数少10 人,若设男生人数为x 人,女生人数为y 人,则可列方程组为2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为x1,x,1b=3、已知方程 y=kx+b 的两组解是2;y则 k=y0.4 某工厂现在年产值是150 万元,如果每增加1000 元的投资一年可增加2500 元的产值,设新增加的投资额为x万元,总产值为y 万元,那么x,y 所满足的方程为5、学校购买35 张电影票共用250
11、元,其中甲种票每张8 元,乙种票每张6 元,设甲种票 x 张,乙种票 y 张,则列方程组,方程组的解是6、一根木棒长8 米,分成两段,其中一段比另一段长那么列的二元一次方程组为1 米,求这两段的长时,设其中一段为x 米,另一段为y,7、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为cm,宽为cm8、某校运动员分组训练,若每组7 人,余 3 人;若每组8 人,则缺5 人;设运动员人数为列方程组为()9、一只轮船顺水速度为40 千米 /时 ,逆水速度为26 千米 /时 ,则船在静水的速度是x 人,组数为y 组,则_ ,水流速度是_.10、一辆汽车从A 地出发 , 向东行驶 , 途中要过一座
12、桥, 使用相同的时间, 如果车速是每小时60 千米 , 就能越过桥2 千米 ; 如果车速是每小时50 千米 , 就差 3 千米才能到桥 , 则 A 地与桥相距_千米 , 用了小时 .( 考虑问题时 , 桥视为一点 )11、一块矩形草坪的长比宽的2 倍多 10m,它的周长是132m,则宽和长分别为_12、一批书分给一组学生,每人 6 本则少 6 本,每人 5 本则多 5 本,该组共有 _名学生, 这批书共有 _本13、某年级有学生246 人,其中男生比女生人数的2 倍少 3 人,求男、 ?女生各有多少人设女生人数为x 人,男生人数为y,则可列出方程组_14、甲、乙两条绳共长17m,如果甲绳减去1
13、 ,乙绳增加1m,两条绳长相等,求甲、?乙两条绳各长多少米若设5甲绳长 x(m),乙绳长y(m),则可列方程组()15、已知长江比黄河长836km,黄河长度的6 倍比长江长度的5 倍多 1 284km设长江、黄河的长度分别为x( km),y( km),则可列出方程组16、班上有男女同学32 人,女生人数的一半比男生总数少10 人,若设男生人数为x 人,女生人数为y 人,则可列方程组为17、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为x1,x,1b=18、已知方程 y=kx+b 的两组解是2;y则 k=y0.19、某工厂现在年产值是150 万元,如果每增加1000 元的投
14、资一年可增加2500 元的产值,设新增加的投资额为x万元,总产值为y 万元,那么x,y 所满足的方程为20、学校购买 35 张电影票共用250 元,其中甲种票每张8 元,乙种票每张6 元,设甲种票x 张,乙种票 y 张,则列方程组,方程组的解是21、一根木棒长8 米,分成两段,其中一段比另一段长1 米,求这两段的长时,设其中一段为x 米,另一段为y,那么列的二元一次方程组为22、一个矩形周长为 20cm,且长比宽大 2cm,则矩形的长为cm,宽为cm23、 七( 2)班有任课教师6 名, 学生 30 名 , 其中男生占全班学生的60,若画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为
15、.24、小利持250 元钱到一超市购买一物品 , 发现每个物品上标价为2.5 元/ 个 , 而在超市的促销广告上却标明: 买这种物品达到100 个以上(不包括100个)售价为2.4 元 / 个 , 小利用手中的钱最多可买个这种物品 .25、某同学买分邮票与一元邮票共花元,已知买的一元邮票比分邮票少枚,设买分邮票x 枚,则依题意得到方程为()26、某种商品的进价为 15 元,出售时标价是22.5 元。由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10,那么该店最多降价_元出售该商品。27、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以 9
16、6 元出售,很快就卖掉了。则这次生意盈亏情况是()A、赚 6元B 、不亏不赚C、亏 4元D、亏 24 元28、班级组织有奖知识竞赛,小明用100 元班费购买笔记本和钢笔共30 件,已知笔记本每本2 元,钢笔每支5 元,那么小明最多能买钢笔()A、20 支B、14支C、13 支D、10 支29、某商店销售一批服装,每件售价150 元,可获利25%,求这种服装的成本价。设这种服装的成本价为x 元,则得到的方程是()150 x 25%B、 150 x 25%C、 x 150×25%D 、25%· x =150A 、x30、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm
17、,售价30 分,大饼直径 40cm,售价 40 分。你更愿意买 _饼,原因 _31、某书城开展学生优惠活动,凡一次性购书不超过200 元的一律九折优惠,超过200 元的其中 200 元按九折算,超过的部分按八折算。某学生一次去购书付款72 元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34 元钱。则该学生第二次购书实际付款_ 元。32、某原料供应商对购买其原料的顾客实行如下优惠办法:( 1)一次购买金额不超过1 万元的不予优惠; ( 2)一次购买金额超过1 万元,但不超过3 万元的九折优惠; (3)一次购买金额超过3 万元,其中 3 万元九折优惠,超过 3万元的部分八
18、折优惠。某厂因库存原因,第一次在该供应商处购买原料付款7800 元,第二次购买付款26100 元。如果他是一次性购买同样的原料,可少付款()A、 1460 元B、 1540 元C、1560元D、 2000 元33、七年级足球循环赛中 , 规定胜一场得3 分, 平一场得1 分, 负一场得 0 分. 现在七 (一)班已赛 8 场, 获 19 分.那么七 ( 一 ) 班现在的战况是 _( 说明 : 填" 胜几场 , 平几场 , 负几场” )知能点 2 :古代问题1古题:“我问开店李三公,众客都来到店中,一房七客多七客,?一房九客一房空 ”那么有 _间房, 有_位客人2今有大、小盛米桶,5
19、个大桶加上1 个小桶,可盛3 斛米; 1 个大桶加上5 个小桶, ?可盛 2 斛米,求大、小桶各盛多少米(斛:量器名,古时用)若设大桶盛x 斛米, ?小桶盛 y 斛米,则可列方程组为_ 3“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”题目大意:在现有鸡、兔在同一个笼子里,上边数有35 个头,下边数有94 只脚,求鸡、兔各有多少只4希腊文集中有一些用童话形式写成的数学题比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上
20、的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多 ”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?规律方法一般性应用题(和差倍问题)学校的篮球比足球数的 2 倍少 3 个,篮球数与足球数的比为3:2,求这两种球队各是多少个?(和差倍问题)一次篮 ,排球比赛 ,共有 48 个队 ,520名运动员参加 ,其中篮球队每队 10 名 ,排球队每队12 名,求篮 ,排球各有多少队参赛?(和差倍问题)一次篮、排球比赛,共有48 个队, 520 名运动员参加,其中篮球队每队10 名,排球队每队 12名,求篮、排球各有多少队参赛?(和差倍问题) 有甲、乙两种金属,甲金属的16 分之一和乙金属
21、的33 分之一重量相等,而乙金属的55 分之一比甲金属的 40 分之一重 7 克,求两种金属各重多少克?(和差倍问题) 某厂第二车间的人数比第一车间的人数的五分之四少30 人 .如果从第一车间调 10 人到第二车间,那么第二车间的人数就是第一车间的四分之三.问这两个车间各有多少人?(和差倍问题) 今年,小李的年龄是他爷爷的五分之一. 小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄 .(和差倍问题) 小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为 341,原来两个加数分别是多少?(和差倍问题、行程问题
22、) 一条公路,第一天修了全程的8 分之一多5 米;第二天修了全程的 5分之一少 14米,还剩63 米,求这条公路有多长?(和差倍问题、行程问题)某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长5m,则该草绳的中段,后段各长多少米?(和差倍问题、金融问题)共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的115 名学生积极参与,已知九一班有三分之一的学生捐了10 元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了 5 元,两班的捐款总额为785 元,问两班各有多少名学生?(和差倍问题) 某检测站要在规定时间内检测一
23、批仪器,原计划每天检测30 台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40 台,结果不但比原计划提前了一天完成任务,还可以多检测25 台 .问规定时间是多少天?这批仪器共多少台?(和差倍问题) 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1 倍,你知道男孩与女孩各有多少人吗?问题:问题中的已知量是什么?待求量是什么?有哪些相等关系(即等量关系)?(行程问题) 一条船顺流航行,每小时行20 千米;逆流航行每小时行16 千米。那么这条轮船在静水中每小时行千米?(行程问题) 甲以 5
24、km/h 的速度进行有氧体育锻炼,2h 后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h 追上甲,最慢不晚于1h15min 追上甲,则乙骑车的速度应当控制在什么范围?(行程问题) 从甲地到乙地的路有一段上坡、一段平路与一段3 千米长的下坡,如果保持上坡每小时走3 千米,平路每小时走4 千米,下坡每小时走5 千米,那么从甲到乙地需90 分,从乙地到甲地需102 分。甲地到乙地全程是多少?(行程问题) 某班同学去18 千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。已知车速度是60 千米 /时,
25、步行速度是A 处,4 千米 /时,求A 点距北山的距离。(行程问题) 甲乙两人分别从甲、乙两地同时相向出发,在甲超过中点50 米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即反身往回走,结果甲、乙两人在距甲地100 米处第二次相遇,求甲、乙两地的路程。(行程问题) 甲 ,乙两人分别从甲 ,乙两地同时相向出发,在甲超过中点50 米处甲 ,乙两人第一次相遇,甲 ,乙到达乙 ,甲两地后立即返身往回走 ,结果甲 ,乙两人在距甲地 100米处第二次相遇 ,求甲 ,乙两地的路程 .(行程问题) 两列火车同时从相距910 千米的两地相向出发,10 小时后相遇 ,如果第一列车比第 1二列车早出发 4小时
26、20 分,那么在第二列火车出发8 小时后相遇 ,求两列火车的速度 .(行程问题)某班同学去 18 千米的北山郊游 .只有一辆汽车 ,需分两组 , 甲组先乘车 , 乙组步行 .车行至 A 处,甲组下车步行 ,汽车返回接乙组 ,最后两组同时达到北山站.已知汽车速度是60 千米 /时 ,步行速度是 4 千米 / 时 ,求 A 点距北山站的距离 .(行程问题) 通讯员要在规定时间内到达某地,他每小时走15 千米,则可提前 24 分钟到达某地;如果每小时走12 千米,则要迟到 15 分钟。求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?(分配问题) 一级学生去饭堂开会,如果每4 人共坐一张长凳
27、 ,则有 28人没有位置坐 ,如果 6 人共坐一张长凳 ,求初一级学生人数及长凳数 .(分配调运) 运往灾区的两批货物,第一批共480 吨,用 8节火车车厢和 20 辆汽车正好装完;第二批共运524吨,用 10 节火车车厢和 6 辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?(分配问题) 若干学生住宿,若每间住4 人则余 20人,若每间住 8 人,则有一间不空也不满,问宿舍几间,学生多少人?(分配问题) 将若干练习本分给若干名同学,如果每人分本,那么还余本;如果每人分本,那么最后一名同学分到的不足本,求学生人数和练习本数。(分配问题) 课外阅读课上,老师将43 本书分给各小组,每组8
28、 本,还有剩余;每组9 本却又不够。问有几个小组?(分配问题) 小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10 颗珠子”.小刚却说:“只要把你的1 给我,我就有10 颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,问各有多3少颗弹珠?(分配问题) 小明与他的爸爸一起做投篮球游戏.两人商定规则为:小明投中1 个得 3 分,小明爸爸投中1 个得 1分 .结果两人一共投中了20 个,一计算,发现两人的得分恰好相等.你能告诉我,他们两人各投中几个吗?(分配问题) 运往灾区的两批货物,第一批共480 吨,用8 节火车车厢和20 辆汽车正好装完;第二批共运524吨,
29、用 10 节火车车厢和6 辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?(分配问题)一级学生去饭堂开会,如果每 4 人共坐一张长凳,则有28 人没有位置坐, 如果 6 人共坐一张长凳,求初一级学生人数及长凳数(分配问题) 用白铁皮做罐头盒。每张铁皮可制盒身16 个,或制盒底43 个,一个盒身与两个盒底配成一套罐头盒。现有150 张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?(分配问题) 某车间原计划30 天生产零件165 个。在前8 天,共生产出52 个零件,由于工期调整,要求提前5天超额完成任务,问以后平均每天至少要生产多少个零件?(分配问题) 某篮球队的一个主力队员在一次
30、比赛中投中得分,除了个三分球外,他还投中的二分球及罚球分别多少个?(分配问题) 一群女生住若干间宿舍,每间住人,剩人无房住;每间住人,有间宿舍住不满,可能有多少间宿舍,多少学生?(分配工程问题) 现要加工400 个机器零件,若甲先做1 天,然后两人再共做人齐心合作3 天,则可超产20 个 .问甲、乙两人每天各做多少个零件?分析:工作时间×工作效率=工作量2 天,则还有60 个未完成;若两(分配调运问题) 一船队运送一批货物,如果每艘船装50 吨,还剩下25 吨装不完;如果每艘船再多装5 吨,还有 35 吨空位求这个船队共有多少艘船,共有货物多少吨?(分配调运问题) 某运输公司有大小两
31、种货车,2辆大车和3 辆小车可运货15.5 吨 ,5辆大车和6 辆小车可运货35 吨 ,客户王某有货52 吨 ,要求一次性用数量相等的大小货车运出,问需用大 ,小货车各多少辆?(分配工程问题) 甲、乙两人同时加工一批零件,前3 小时两人共加工126 件,后 5 小时甲先花了1 小时修理工具,因此甲每小时比以前多加工10 件,结果在后一段时间内,甲比乙多加工了10 件,甲、乙两人原来每小时各加工多少件?(分配几何问题) 用如图一中的长方形和正方形纸板作侧面和底面,做成如图二中竖式和横式的两种无盖纸盒。现在仓库里1500 张正方形纸板和1001 张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板
32、用完?图一图二(金融问题)一种饮料大小包装有3 种 ,1 个中瓶比2 小瓶便宜 2 角 ,1 个大瓶比 1个中瓶加 1个小瓶贵4 角,大,中,小各买 1 瓶 , 需 9 元 6 角 .3 种包装的饮料每瓶各多少元?(金融问题) 五一期间,某商场搞优惠促销,决定由顾客抽奖决定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付 368 元,这两面种商品原价之和为500 元,问两种商品原价各是多少元?(金融问题) 某厂买进甲 ,乙两种材料共 56 吨 ,用去 9860 元 .若甲种材料每吨 190元,乙种材料每吨 160元 ,则两种材料各买多少吨 ?(金融问题) 某人用 24000 元买进甲
33、,乙两种股票 ,在甲股票升值 15%, 乙股票下跌10% 时卖出 ,共获利 1350 元 ,试问某人买的甲 , 乙两股票各是多少元?(金融问题) 有甲乙两种债券年利率分别是10% 与 12%, 现有 400 元债券 ,一年后获利 45 元 ,问两种债券各有多少 ?(金融问题) 购买甲种图书 10本和乙种图书16 本共付款 410 元 ,甲种图书比乙种图书每本贵15 元 ,问甲 ,乙两种图书每本各买多少元?(金融问题) 某家庭前年结余5000 元 ,去年结余9500元 ,已知去年的收入比前年增加了15%, 而支出比前年减少了 10%, 这个家庭去年的收入和支出各是多少?(金融问题)某人装修房屋
34、,原预算 25000元 .装修时因材料费下降了20%, 工资涨了 10%, 实际用去21500元 .求原来材料费及工资各是多少元(金融问题)某单位甲 ,乙两人 ,去年共分得现金9000 元 ,今年共分得现金12700 元 . 已知今年分得的现金,甲增加50%, 乙增加30% . 两人今年分得的现金各是多少元(金融问题) 某厂买进甲、乙两种材料共56 吨,用去9860 元。若甲种材料每吨 190 元,乙种材料每吨160 元,则两种材料各买多少吨?(金融问题) 某人用 24000元买进甲、乙两种股票,在甲股票升值15,乙股票下跌10时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?(金
35、融问题) 有甲乙两种债券年利率分别是10%与 12%,现有400 元债券,一年后获利45 元,问两种债券各多少?(金融问题、和差倍问题)种饮料大小包装有3 种, 1 个中瓶比2 小瓶便宜 2 角, 1 个大瓶比 1 个中瓶加 1 个小瓶贵 4 角,大、中、小各买1 瓶,需9 元 6 角。 3 种包装的饮料每瓶各多少元?(金融问题) 购买甲种图书10 本和乙种图书 16本共付款 410 元,甲种图书比乙种图书每本贵15 元,问甲、乙两种图书每本各买多少元?(金融问题)2008 年 5 月 12 日,四川省汶川县发生里氏8.0 级强烈地震,给当地人民造成巨大的损失全国迅速组织捐款支援灾区,我校七年
36、级(1)班 55名同学共捐款830 元,捐款情况如右表表中捐款2 元和 5 元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由捐款10153050人数184规律方法应用(难题)(分配问题) 戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多 ”一男生说: “我看到的红帽子是白帽子的2 倍”请问:该船上男、女生各几人?(行程问题) 有一头狮子和一只老虎在平原上决斗,争夺王位,?最后一项是进行百米来回赛跑(合计200m),谁赢谁为王已知每跨一步,老虎为3m,狮子为2m, ?这种步幅到最后不变,若狮子每跨3 步,老虎只跨2 步
37、,那么这场比赛结果如何?(行程问题 )通讯员要在规定时间内到达某地, 他每小时走 15 千米 ,则可提前 24 分钟到达某地 ;如果每小时走12千米 ,则要迟到15 分钟 .求通讯员到达某地的路程是多少千米和原定的时间为多少小时(植树问题、行程问题、金融问题) 某工程车从仓库装上水泥电线杆运送到离仓库恰为1000 米处的公路边栽立,要求沿公路的一边向前每隔100 米栽立电线杆。已知工程车每次最多只能运送电线杆4 根,要求完成运送18根的任务,并返回仓库。若工程车行驶每千米耗油m 升(耗油量只考虑与行驶的路程有关),每升汽油n 元,求完成此项任务最低的耗油费用。(金融问题) 小敏的爸爸为了给她筹
38、备上高中的费用,在银行同时用两种方式共存了4000 元钱 .第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25% ;第二种,三年期整存整取,这种存款银行年利率为2.70%. 三年后同时取出共得利息303.75 元 (不计利息税 ),问小敏的爸爸两种存款各存入了多少元?(金融问题) 某公司的门票价格规定如下表所列,某校七年级(1),( 2)两个班共 104人去游公园,其中(1)班人数较少,不到50 人,( 2)班人数较多,有50 多人经估算,如果两班都以班为单位分别购票,则一共应付 1240元;如果两班联合起来,作为一个团体购票,?则可以节省不少钱,则两班各
39、有多少名学生?购票人数150 人51100 人100 人以上票价 13元/人 11元/人9元/人(金融问题) 某同学在A、 B 两购物中心发现他看中的运动服的单价相同, 球鞋的单价也相同, 运动服和球鞋的单价之和为452 元 , 且运动服的单价比球鞋的单价的4倍少 8元.( 1)求该同学看中的运动服和球鞋的单价各是多少元?( 2)某一天 , 该同学上街 , 恰好赶上商家促销,A 所有的商品打八折销售,B 全场每购物满 100 元返购物券30元销售 (不足 100 元不返券 , 购物券全场通用 , 只限于购物 ),他只带了400 元钱 . 如果他只在一家购物中心购买这两种物品, 你能说明他可以选
40、择哪一家购买更省钱吗?还有哪些购买方式?哪种方式更划算?(金融问题) 某校组织部分师生到甲地考察,学校到甲地的全程票价为元,对集体购票,客运公司有两种优惠方案供选择:方案:所有师生按票价的购票;方案:前人购全票,从第人开始,每人按票价的购票。你若是组织者,请你根据师生人数讨论选择哪种方案更省钱?(节算讨论金融问题)小明想在两种灯中选购一种,其中一种是10 瓦(即0.01 千瓦)的节能灯,售价50 元,另一种是100 瓦(即0.1 千瓦)的白炽灯,售价5 元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5 元 /千瓦 ·时( 1)照明时间 500 小时选哪一种灯省钱?( 2)照明时间 1500 小时选哪一种灯省钱?( 3)照明多少时间用两种灯费用相等?(节算讨论金融问题)某公司为了扩大经营,决定购进6 台机器用于生产某种活塞。现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示。经过预算, 本次购买机器所耗资金不能超过万元。34
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防溺水安全活动总结
- 社会实践部的述职报告
- 橱柜销售经理工作总结
- 家乡环境建议书
- 微教育阅读心得7篇
- 蔬菜年终总结6篇
- 市政道路监理会议纪要范文(3篇)
- 销售主管工作汇报模板4篇
- 种草莓教案5篇
- 2024年危险化学品经营单位主要负责人理论试题及答案
- 系统集成项目管理工程师(基础知识、应用技术)合卷软件资格考试(中级)试题及解答参考(2025年)
- 广东省珠海市第十六中学2024-2025学年上学期期中质量监测九年级数学试题(无答案)
- 2024新信息科技七年级《第一单元 探寻互联网新世界》大单元整体教学设计2022课标
- 成语积累竞赛试题
- 2024焊接工艺规程
- 第六单元(整体教学设计)九年级语文上册大单元教学名师备课系列(统编版)
- DB1331T 080-2024 雄安新区零碳建筑技术标准
- 河北省衡水市枣强县2024-2025学年九年级上学期10月月考物理试题
- 时代乐章-第2课 科技之光(课件)2024-2025学年人教版(2024)初中美术七年级上册 -
- 基于区块链的车联网安全研究综述
- 《8 课余生活真丰富》教学设计-2024-2025学年道德与法治一年级上册统编版
评论
0/150
提交评论