工程力学教案(详细讲稿)讲课稿_第1页
工程力学教案(详细讲稿)讲课稿_第2页
工程力学教案(详细讲稿)讲课稿_第3页
工程力学教案(详细讲稿)讲课稿_第4页
工程力学教案(详细讲稿)讲课稿_第5页
免费预览已结束,剩余53页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、此文档仅供收集于网络,如有侵权请联系网站删除理论力学教案1课题第1讲一一第一章绪论学时2学时1、掌握工程力学的任务、地位、作用和学习方法,可变形固体的基本假设,工程力学的研究对象(杆件),杆件变形的形的形式。教学 目的2.理解工程力学的研究对象(杆件)的几何特征,使学生对工程力学这门课要求程的任务、研究对象一个全面的概念。3. 了解工程的发展简史和学习本课程的方法。主要 内容1、简单介绍四种基本变形重点 难点变形固体及具基本假设教学方法 和手以讲授为主,使用电子教案段课后作业预习:第二章练习只供学习与交流本次讲稿第一章绪论第一节工程力学的研究对象建筑物中承受荷载而起骨架作用的部分称为结构。结构

2、是由若干构件按一定 方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡梢梢身的排架 是由立柱和横梁组成的刚架结构,如图 1 1a所示;单层厂房结构由屋顶、楼板 和吊车梁、柱等构件组成,如图 1-1b所示。结构受荷载作用时,如不考虑建筑 材料的变形,其几何形状和位置不会发生改变。摩鹿十小罩图 1 1ab结构按其几何特征分为三种类型:(1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面 的宽度和高度。(2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于 另两个方向的尺寸。(3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。工程力学的研

3、究对象主要是杆系结构。第二节工程力学的研究内容和任务工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件 的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合 理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设此文档仅供收集于网络,如有侵权请联系网站删除计的结构既安全可靠又经济合理。进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。结构正常工作必须满足强度、刚度和稳定性的要求。强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏

4、。刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。按教学要求,工程力学主要研究以下几个部分的内容。( 1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。( 2) 杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计 算。( 3) 静定结构的内力计算。这部分是静定结构承载能力计算和超静

5、定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。( 4) 超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。第三节刚体、变形固体及其基本假设工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。理想变形固体是对实际变形固体的材料理想化,作出以下假设:( 1) 连续性假设。认为物体的

6、材料结构是密实的,物体内材料是无空隙的连续分布。( 2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。( 3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产

7、生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。综上所述,工程力学把所研究的结构和构件看作是连续、均匀、 各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。第四节荷载的分类结构工作时所承受的主动外力称为荷载。荷载可分为不同的类型。( 1) 按作用性质可分为静荷载和动荷载。由零逐渐缓慢增加加到结构上的荷载称为静荷载,静荷载作用下不产生明显的加速度。大小方向随时间而改变的荷载称为动荷载。地震力、冲击力、惯性力等都为动荷载。( 2) 按作用时间的长短可分为恒荷载和活荷载。永久作用在结构上大小、方向不变的

8、荷载称为恒荷载。结构、固定设备的自重等都为恒荷载。暂时作用在结构上的荷载称为活荷载。风、雪荷载等都是活荷载。(3)按作用范围可分为集中荷载和分布荷载。若荷载的作用范围与结构的尺寸相比很小时,可认为荷载集中作用于一点,称为集中荷载。分布作用在体积、面积和线段上的荷载称为分布荷载。结构的自重、风、雪等荷载都是分布荷载。当以刚体为研究对象时,作用在结构上的分布荷载可用其合力(集中荷载)代替;但以变形体为研究对象时,作用在结构上的分布荷载不能用其合力代替。只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除理论力学教案2课题第2讲一一第二章刚体静力学基础学时4学时+ 2学时习题课教学 目的 要求

9、1、掌握力学的基本概念和公理。2、熟悉各种常见约束的性质,熟练地画出受力图。主要 内容1、静力学基本概念。2、静力学基本公理。3、约束与约束反力。物体的受力分析与受力图。重点 难点1、平衡、刚体和力的概念和静力学的基本公理。2、掌握物体的受力分析的方法3、止确地选取分离体,并画出受力图是求解静力学的关键,教学 方法 和手 段以讲授为主,使用电子教案课后 作业 练习问题:P12: 1, 2, 3, 4, 5, 6习题:P12: 1, 2, 3预习:第三章本次讲稿第二章 刚体静力学基础第一节静力学基本概念静力学是研究物体的平衡问题的科学。主要讨论作用在物体上的力系的简化和平衡两大问题。所谓平衡,在

10、工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。一、 刚体的概念工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。静力学的研究对象仅限于刚体,所以又称之为刚体静力学。二、力的概念力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。

11、刚体只考虑外效应;变形固体还要研究内效应。经验表明力对物体作用的效应完全决定于以下力的三要素:( 1)力的大小是物体相互作用的强弱程度。在国际单位制中,力的单位用牛顿(N)或千牛顿(kN), 1kN=103N。( 2)力的方向包含力的方位和指向两方面的涵义。如重力的方向是“竖直向下” 。 “竖直”是力作用线的方位, “向下”是力的指向。( 3)力的作用位置是指物体上承受力的部位。一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。既然力是有大小和方向的量,所以力是矢量。可以用

12、一带箭头的线段来表示,如只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除图2-1所示,线段AB长度按一定的比例尺表示力F的大小,线段的方位和箭头的指 向表示力的方向。线段的起点 A或终点B表示力的作用点。线段AB的延长线(图中 虚线)表示力的作用线。图2 1本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。 如果作用于物体上的某一力系可以用另一力系来代替,而不改变原有的状态,这两个 力系互称等效力系。如果一个力与一个力系等效,则称此力为该力系的合力,这个过 程称力的合成;而力系中的各个力称此合力的分力,将合

13、力代换成分力的过程为力的 分解。在研究力学问题时,为方便地显示各种力系对物体作用的总体效应,用一个简 单的等效力系(或一个力)代替一个复杂力系的过程称为力系的简化。力系的简化是 刚体静学的基本问题之一。第二节静力学公理所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。公理一二力平衡公理作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。 可以表示为:F=-F/或F+F/=0此公理给出了作用于刚体上的最简力系平衡时所必须满足的条件,是推证其它力 系平衡条件的基础。在两个力作用下处于平衡的物体称为二力体,若物体

14、是构件或杆 件,也称二力构件或二力杆件简称二力杆。公理二加减平衡力系公理在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。推论一 力的可传性原理作用于刚体上的力可以沿其作用线移至刚体内任意一点,而不改变该力对刚体的效应。只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除图2 2证明:设力F作用于刚体上的点A,如图2-2所示。在力F作用线上任选一点B, 在点B上加一对平衡力Fi和F2,使F尸F2=F则Fi、F2、F构成的力系与F等效。将平衡力系F、F2减去,则Fi与F等效。 此时,相当于力F已由点A沿作用线移到了点B。由此可知,作用于刚体上的力是滑移矢量,因此作

15、用于刚体上力的三要素为大小、 方向和作用线。公理三力的平行四边形法则作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。如图23a所示,即作用于物体上同一点F r=F 1+F2。以Fr表不力Fi和力F2的合力,1则可以表否为: 两个力的合力等于这两个力的图2 3在求共点两个力的合力时,我们常采用 力的三角形法则:(如图2-3b)所示。从 刚体外任选一点a作矢量ab代表力Fi,然后从b的终点作bc代表力F2,最后连起 点a与终点c得到矢量ac,则ac就代表合力矢Fro分力矢与合力矢所构成的三角形 abc称为力的三角形。

16、这种合成方法称为力三角形法则。推论二三力平衡汇交定理刚体受同一平面内互不平行的三个力作用而平衡时,则此三力的作用线必汇交于 一点。图2 4证明:设在刚体上三点A、B、C分别作用有力Fi、 F2、F3,其互不平行,且为 平衡力系,如图2-4所示,根据力的可传性,将力 Fi和F2移至汇交点O,根据力的 可传性公理,得合力Fri,则力F3与FR1平衡,由公理一知,F3与Fri必共线,所以 力Fi的作用线必过点O。公理四作用与反作用公理两个物体间相互作用力,总是同时存在,它们的大小相等,指向相反,并沿同一 直线分别作用在这两个物体上。物体间的作用力与反作用力总是同时出现,同时消失。可见,自然界中的力总

17、是 成对地存在,而且同时分别作用在相互作用的两个物体上。这个公理概括了任何两物 体间的相互作用的关系,不论对刚体或变形体,不管物体是静止的还是运动的都适用。 应该注意,作用力与反作用力虽然等值、反向、共线,但它们不能平衡,因为二者分 别作用在两个物体上,不可与二力平衡公理混淆起来。公理五刚化原理变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),则其平衡状态不变。此原理建立了刚体平衡条件与谈形体平衡条件之间的关系,即关于刚体的平衡条件,对于变形体的平衡来说,也必须满足。但是,满足了刚体的平衡条件,变形体不 一定平衡。例如一段软绳,在两个大小相等,方向相反的拉力作用下处于平衡,若将 软绳

18、变成刚杆,平衡保持不变。把过来,一段刚杆在两个大小相等、方向相反的压力 作用下处于平衡,而绳索在此压力下则不能平衡。可见,刚体的平衡条件对于变形体 的平衡来说只是必要条件而不是充分条件。第三节约束与约束反力工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如 飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。 如悬挂的重物,因为受到绳索的限制,使其在某些方向不能运动而成为非自由体,这 种阻碍物体运动的限制称为约束。约束通常是通过物体间的直接接触形成的。既然约束阻碍物体沿某些方向运动,那么当物体沿着约束所阻碍的运动方向运动只供学习与交流此文档仅供收集于网

19、络,如有侵权请联系网站删除图2 5二、光滑接触面约束此文档仅供收集于网络,如有侵权请联系网站删除或有运动趋势时,约束对其必然有力的作用,以限制其运动,这种力称为约束反力。 简称反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相 反,它的作用点就在约束与被约束的物体的接触点,大小可以通过计算求得。工程上通常把能使物体主动产生运动或运动趋势的力称为主动力。如重力、风力、 水压力等。通常主动力是已知的,约束反力是未知的,它不仅与主动力的情况有关, 同时也与约束类型有关。下面介绍工程实际中常见的几种约束类型及其约束反力的特 性。一、 柔性约束图26绳索、链条、皮带等属于柔索约束。理想

20、化条件:柔索绝对柔软、无重量、无粗细、不可伸长或缩短。由于柔索只能承受拉力,所以 柔索的约束反力作用于接触点, 方向沿柔索的中心线而背离物体,为拉力。如图2 5和图2- 6所示。图2 7图2 8当物体接触面上的摩擦力可以忽略时,即可看作光滑接触面,这时两个物体可以 脱离开,也可以沿光滑面相对滑动,但沿接触面法线且指向接触面的位移受到限制。 所以光滑接触面约束反力作用于接触点,沿接触面的公法线且指向物体,为压力。如图2 7和图2 8所示。三、光滑钱链约束图2 9工程上常用销钉来联接构件或零件,这类约束只限制相对移动不限制转动,且忽 略销钉与构件间的磨擦。若两个构件用销钉连接起来,这种约束称为钱链

21、约束,简称 较连接或中间较,图2 9a所示。图2 9b为计算简图。钱链约束只能限制物体在垂 直于销钉轴线的平面内相对移动,但不能限制物体绕销钉轴线相对转动。如图2-9c所示,钱链约束的约束反力作用在销钉与物体的接触点D,沿接触面的公法线方向,使被约束物体受压力。但由于销钉与销钉孔壁接触点与被约束物体所受的主动力有 关,一般不能预先确定,所以约束反力Fc的方向也不能确定。因此,其约束反力作用在垂直于销钉轴线平面内,通过销钉中心,方向不定。为计算方便,钱链约束的约 束反力常用过钱链中心两个大小未知的正交分力 Xc, Yc来表示如图2 9d所示。两个 分力的指向可以假设。四、固定较支座:图 210将

22、结构物或构件用销钉与地面或机座连接就构成了固定较支座,如图 2- 10a所 示。固定较支座的约束与钱链约束完全相同。 简化记号和约束反力如图210b和图2 10c。五、辐轴支座图 211在固定较支座和支承面间装有辐轴,就构成了辐轴支座,又称活动较支座,如图2- 11a所示。这种约束只能限制物体沿支承面法线方向运动, 而不能限制物体沿支承 面移动和相对于销钉轴线转动。所以其约束反力垂直于支承面,过销钉中心指向可假 设。如图2 11b和图211c所示。六、链杆约束图 212只供学习与交流两端以钱链与其它物体连接中间不受力且不计自重的刚性直杆称链杆,如图2-12a所示。这种约束反力只能限制物体沿链杆

23、轴线方向运动,因此链杆的约束反力沿 着链杆,两端中心连线方向,指向或为拉力或为压力。如图 212b和图212c所示。 链杆属于二力杆的一种特殊情形。七、固定端约束图 213将构件的一端插入一固定物体(如墙)中,就构成了固定端约束。在连接处具有 较大的刚性,被约束的物体在该处被完全固定,即不允许相对移动也不可转动。固定 端的约束反力,一般用两个正交分力和一个约束反力偶来代替,如图 2-13所示。第四节 物体的受力分析与受力图静力学问题大多是受一定约束的非自由刚体的平衡问题,解决此类问题的关键是找出主动力与约束反力之间的关系。因此,必须对物体的受力情况作全面的分析,即 物体的受力分析,它是力学计算

24、的前提和关键。物体的受力分析包含两个步骤:一是 把该物体从与它相联系的周围物体中分离出来,解除全部约束,单独画出该物体的图 形,称为取分离体。二是在分离体上画出全部主动力和约束反力,这称为画受力图。一、 下面举例说明物体受力分析的方法。例21起吊架由杆件AB和CD组成,起吊重物的重量为 Q。不计杆件自重, 作杆件AB的受力图。图 214解:取杆件AB为分离体,画出其分离体图。杆件AB上没有荷载,只有约束反力。A端为固定较支座。约束反力用两个垂直分 力Xa和Ya表示,二者的指向是假定的。D点用钱链与CD连接,因为CD为二力杆, 所以较D反力的作用线沿C、D两点连线,以Fd表示。图中Fd的指向也是

25、假定的。 B点与绳索连接,绳索作用给 B点的约束反力Ft沿绳索、背离杆件AB。图214b 为杆件AB的受力图。应该注意,(图b)中的力Ft不是起吊重物的重力Fg。力Ft 是绳索对杆件AB的作用力;力Fg是地球对重物的作用力。这两个力的施力物体和受 力物体是完全不同的。在绳索和重物的受(图 C)上,作用有力Ft的反作用力Ft, 和重力Fg。由二力平衡条件,力Ft,与力Fg是反向、等值的;由作用反作用定律, 力Ft与Ft,是反向、等值的。所以力Ft与力Fg大小相等,方向相同。例22水平梁A B用斜杆CD支撑,A、C、D三处均为光滑较链连接,如图2 15所示。梁上放置一重为Fg1的电动机。已知梁重为

26、Fg2,不计杆CD自重,试分 别画出杆CD和梁AB的受力图。图 215解: (1)取CD为研究对象。由于斜杆CD自重不计,只在杆的两端分别受有 钱链的约束反力Fc和Fd的作用,由些判断 CD杆为二力杆。根据公理一,Fc和Fd 两力大小相等、沿钱链中心连线 CD方向且指向相反。斜杆CD的受力图如图215b 所示。(2)取梁AB (包括电动机)为研究对象。它受 Fgi、Fg2两个主动力的作用;梁 在钱链D处受二力杆CD给它的约束反力Fd,的作用,根据公理四,Fd,=-Fd; 梁在A处受固定较支座的约束反力,由于方向未知,可用两个大小未知的正交分力 Xa和Ya表示。梁AB的受力图如图215c所示。例

27、2-3简支梁两端分别为固定较支座和可动较支座,在 C处作用一集中荷载 Fp (图216a),梁重不计,试画梁AB的受力图。图 216解:取梁AB为研究对象。作用于梁上的力有集中荷载 Fp,可动较支座B的反力 Fb,铅垂向上,固定较支座A的反力用过点A的两个正交分力Xa的Ya表示。受力图 如图216b所示。由于些梁受三个力作用而平衡,故可由推论二确定 Fa的方向。用 点D表示力Fp和Fb的作用线交点。Fa的作用线必过交点D,如图216c所示。例2 4三较拱桥由左右两拱较接而成,如图 217a所示。设各拱自重不计, 在拱AC上作用荷载F。试分别画出拱AC和CB的受力图。图 217解:(1)取拱CB

28、为研究对象。由于拱自重不计,且只在 B、C处受到较约束, 因此CB为二力构件。在钱链中心 B、C分别受到Fb和Fc的作用,且Fb=-Fco拱 CB的受力图如图217b所示。(2)取拱AC连同销钉C为研究对象。由于自重不计,主动力只有荷载 F;点C 受拱CB施加的名束力Fc,,且Fc,=Fc;点A处的约束反力可分解为 Xa和Ya。 拱AC的受力图如图217c所示。又拱AC在F、Fc /和Fa三力作用下平衡,根据三力平衡汇交定理,可确定出钱 链A处约束反力Fa的方向。点D为力F与Fc,的交点,当拱AC平衡时,Fa的作 用线必通过点D,如图217d所示,Fa的指向,可先作假设,以后由平衡条件确定。例

29、2 5图218a所示系统中,物体F重Fg,其它和构件不计自重。作(1) 整体;(2) AB杆;(3) BE杆;(4)杆CD、轮C、绳及重物F所组成的系统的受力 图。图 218解:整体受力图如图218a所示。固定支座A自有两个垂直反力和一个约束反 力偶。较C、D、E和G点这四处的约束反力对整体来说是内力,受力图上不应画出。杆件AB的受力图如图218b所示。Xt杆件AB来说,较B、D的反力是外力, 应画出。杆件BE的受力图如图2- 18c所示。BE上B点的反力Xb '和Yb '是AB上Xb 和Yb反作用力,必须等值、反向的画出。杆件CD、轮C、绳和重物F所组成的系统的受力图如图所示

30、。其上的约束反力 分别是图218b和图218c上相应力的反作用力,它们的指向分别与相应力的指向 相反。如Xe,是图218c上Xe的反作用力,力Xe,的指向应与力Xe的指向相反, 不能再随意假定。钱C的反力为内力,受力图上不应画出。在画受力图时应注意如下几个问题:(1)明确研究对象并取出脱离体。(2)要先 画出全部的主动力。(3)明确约束反力的个数。凡是研究对象与周围物体相接触的地 方,都一定有约束反力,不可随意增加或减少。(4)要根据约束的类型画约束反力。即按约束的性质确定约束反力的作用位置和方向,不能主观臆断。(5)二力杆要优先分析。(6)对物体系统进行分析时注意同一力,在不同受力图上的画法

31、要完全一致; 在分析两个相互作用的力时,应遵循作用和反作用关系,作用力方向一经确定,则反 作用力必与之相反,不可再假设指向。(7)内力不必画出。思考题2- 1说明下列式子的意义和区别。(1) F1 = F2 和 F1 = F2;(2) Fr=F1 + F2和 Fr= F1 + F22-2力的可传性原理的适用条件是什么?如图 2-19所示,能否根据力的可传性原理,将作 用于杆AC上的力F沿其作用线移至杆BC上而成力F ?图 219图 2202-3作用于刚体上大小相等、方向相同的两个力对刚体的作用是否等效?2-4物体受汇交于一点的三个力作用而处于平衡,此三力是否一定共面?为什么?此文档仅供收集于网

32、络,如有侵权请联系网站删除25图2 20中力F作用在销钉C上,试问销钉C对AC的力与销钉C对BC的力是否等值、 反向、共线?为什么?26图2 21中各物体受力图是否正确?若有错误试改正。理论力学教案3课题第3讲第一早平面汇交力系课时4学时教学1、掌握平面汇交力系的合成与平衡。目的 要求2、掌握平面汇交力系合成的几何法和解析法。3、理解力在直角坐标系的投影,能熟练计算力在直角坐标轴上的投影。主要内容1、平面汇交力系的合成与平衡的几何法。2、平面汇交力系合成与平衡的解析法只供学习与交流重点 难点平面汇交力系合成与平衡的解析法教学方法和手以讲授为主,使用电子教案段课后问题:P21: 1, 2, 3,

33、 4, 5作业习题:P22: 1, 2, 3, 4, 5, 6, 8练习预习:第四章本次讲稿第三章平面汇交力系根据力系中各力作用线的位置,力系可分为平面力系和空间力系。各力的作用线 都在同一平面内的力系称为平面力系。在平面力系中又可以分为平面汇交力系、平面 平行力系、平面力偶系和平面一般力系。在平面力系中,各力作用线汇交于一点的力 系称平面汇交力系。本章讨论平面汇交力系的合成与平衡问题。§3-1平面汇交力系合成与平衡的几何法一、平面汇交力系合成的几何法设在某刚体上作用有由力 Fl、F2、F3、F4组成的平面汇交力系,各力的作用线 交于点A,如图31a所示。由力的可传性,将力的作用线移

34、至汇交点 A;然后由力的 合成三角形法则将各力依次合成,即从任意点 a作矢量ab代表力矢Fi,在其末端b 作矢量bc代表力矢F2,则虚线ac表示力矢Fi和F2的合力矢Fri;再从点C作矢量此文档仅供收集于网络,如有侵权请联系网站删除cd代表力矢F3,则ad表示Fr和F3的合力Fr2;最后从点d作de代表力矢F4,则 ae代表力矢Fr2与F4的合力矢,亦即力 Fi、F2、F3、F4的合力矢Fr,其大小和 方向如图31b,其作用线通过汇交点 A。图3-1作图31b时,虚线ac和ad不必画出,只需把各力矢首尾相连,得折线 abcd, 则第一个力矢Fi的起点a向最后一个力矢F4的终点e作ae,即得合力

35、矢Fr。各分力 矢与合力矢构成的多边形称为力的多边形,表示合力矢的边 ae称为力的多边形的逆 封边。这种求合力的方法称为力的多边形法则。若改变各力矢的作图顺序,所得的力的多边形的形状则不同,但是这并不影响最后所 得的逆封边的大小和方向。但应注意,各分力矢必须首尾相连,而环绕力多边形周边 的同一方向,而合力矢则把向封闭力多边形。上述方法可以推广到由n个力Fi、F2、Fn组成的平面汇交力系:平面汇 交力系合成的结果是一个合力,合力的作用线过力系的汇交点, 合力等于原力系中所 有各力的矢量和。可用矢量式表示为Fr=Fi +F2 + +Fn =E F(3-1)例31同一平面的三根钢索边连结在一固定环上

36、,如图32所示,已知三钢索的拉力分别为:F1=500N, F2= 1000N, F3 = 2000N。试用几何作图法求三根钢索 在环上作用的合力。此文档仅供收集于网络,如有侵权请联系网站删除图3 2解 先定力的比例尺如图。作力多边形先将各分力乘以比例尺得到各力的长度, 然后作出力多边形图(3 2b),量得代表合力矢的长度为,则 Fr的实际值为Fr = 2700NFr的方向可由力的多边形图直接量出,Fr与Fi的夹角为71。3"。二、平面汇交力系平衡的几何条件图3-3在图3- 3a中,平面汇交力系合成为一合力,即与原力系等效。若在该力系中再 加一个与等值、反向、共线的力,根据二力平衡公理

37、知物体处于平衡状态,即为平衡 力系。对该力系作力的多边形时,得出一个闭合的力的多边形,即最后一个力矢的末 端与第一个力矢的始端相重合,亦即该力系的合力为零。因此,平面汇交力系的平衡的必要与充分的几何条件是:力的多边形自行封闭,或各力矢的矢量和等于零。用矢量表不为Fr = EF=0(3 2)例3 2图34a所求一支架,A、B为钱链支座,C为圆柱较链。斜撑杆 BC 与水平杆AC的夹角为30。在支架的C处用绳子吊着重G=20kN的重物。不计杆件 的自重,试求各杆所受的力。图3 4解 杆AC和BC均为二力杆,其受力如图3 4b所示。取销钉C为研究对象, 作用在它上面的力有:绳子的拉力 Ft(Ft=G)

38、, AC杆和BC杆对销钉C的作用力Fca 和Fcb。这三个力为一平面汇交力系(销钉 C的受力图如图34c所示)。根据平面汇交力系平衡的几何条件,Ft、Fca和Fcb应组成闭合的力三角形。选 取比例尺如图,先画已知力 FT = ab,过a、b两点分别作直线平行于Fca和Fcb得交 点c,于是得力三角形abc,顺着abc的方向标出箭头,使其首尾相连,则矢量 ca和 bc就分别表不力Fca和Fcb的大小和方向。用同样的比例尺量得FcA=34.6kNFcB = 40kN§3-2平面汇交力系合成与平衡的解析法求解平面汇交力系问题的几何法,具有直观简捷的优点,但是作图时的误差难以避免 因此,工程

39、中多用解析法来求解力系的合成和平衡问题。解析法是以力在坐标轴上的 投影为基础的。在坐标轴上的投影如图35所示,设力F作用于刚体上的A点,在力作用的平面内建立坐标系 oxy, 由力F的起点和终点分别向x轴作垂线,得垂足ai和bi,则线段aibi冠以相应的正 负号称为力F在x轴上的投影,用X表示。即X=±aibi;同理,力F在y轴上的投 影用Y表示,即Y=±a2b2。X ab F cos式中"B必谊bF皆X1、Y轴正向所夹的锐角。(33)力在坐标轴上的投影是代数量,正负号规定:力的投影由始到末端与坐标轴正向 一致其投影取正号,反之取负号。投影与力的大小及方向有关,即只

40、供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除图35反之,若已知力F在坐标轴上的投影X、Y,则该力的大小及方向余弦为F X2X(3 4)cos应当注意,力的投影和力的分量是两个不同的概念。投影是代数量,而分力是矢量; 投影无所谓作用点,而分力作用点必须作用在原力的作用点上。另外仅在直角坐标系 中在坐标上的投影的绝对值和力沿该轴的分量的大小相等。二、合力投影定理设一平面汇交力系由Fl、F2、F3和F4作用于刚体上,其力的多边形 abcde如图 3-6所示,封闭边ae表示该力系的合力矢Fr,在力的多边形所在平面内取一坐标系 oxy,将所有的力矢都投影到x轴和y轴上。得X=a iei, X

41、i=a 1 bi, X2=biCi, X3=Cidi ,X4=d iei由图3- 6可知aiei=aibi+bici+cidi +diei即X=X 1+X2+X3+X4同理Y=Yi+Y2+Y3+Y4将上述关系式推广到任意平面汇交力系的情形,得(35)X Xi X2Xn XY Yi Y,Yn Y即合力在任一轴上的投影, 影定理。图3-6等于各分力在同一轴上投影的代数和,这就是合力投三、平面汇交力系合成的解析法用解析法求平面汇交力系的合成时, 首先在其所在的平面内选定坐标系 oxy。求出力种各次在y<2轴0y单上秒存影cos只供学习与交流XFr,由合力投影定理得(3 6)此文档仅供收集于网络

42、,如有侵权请联系网站删除其中是合力Fr分别与X、Y轴正向所夹的锐角。例33如图3 7所求,固定圆环作用有四根绳索,其拉力分别为 Fi = 0.2kN, F2 = 0.3kN,F3=0.5kN,F4=0.4kN,它们与轴的夹角分另U为 i = 30o, % 2= 45o, % 3 = 0, %4=60o。试求它们的合力大小和方向。图3 7解 建立如图3-7所示直角坐标系。根据合力投影定理,有X= 2X= Xi+X2+X3+X4= Ficos% 1 + F2 cos% 2+F3 cos% 3+ F4 cos% 4=1.085kNY= 2 Y= Yi+Y2+Y3+Y4= Fisin % 1 + F2

43、 sin % 2 + F3sin % 3 F4 sin % 4= -0.234kN由2X、BY的代数值可知,X沿X轴的正向,Y沿Y轴的负向。由式(3 6)得 合力的大小Fr . (X)2 ( Y)2 1.11kN方向为cos X 0.977解得=l2ol2/四、平面汇交力系平衡的解析条件我们已经知道平面汇交力系平衡的必要与充分条件上其合力等于零,即Fr = 0。由式(36)可知,要使Fr = 0,须有2X=0 ; 2Y=0(38)上式表明,平面汇交力系平衡的必要与充分条件是:力系中各力在力系所在平面 内两个相交轴上投影的代数和同时为零。式(3 8)称为平面汇交力系的平衡方程。式(2-8)是由两

44、个独立的平衡方程组成的,故用平面汇交力系的平衡方程只能 求解两个未知量。例3-4重量为G和重物,放置在倾角为的光滑斜面上(如图38),试求保持重物成平衡时需沿斜面方向所加的力F和重物对斜面的压力Fn。只供学习与交流此文档仅供收集于网络,如有侵权请联系网站删除图38解 以重物为研究对象。重物受到重力 G、拉力F和斜面对重物的作用力Fn,其 受力图如图38b所示。取坐标系oxy,列平衡方程2X=0Gsin%F=0(1)2Y=0-Gcosa +Fn=0(2)解得 F = Gsin aFn = Gcosa则重物对斜面的压力Fnz =Gcos%,指向和相反。例35重G = 20kN的物体被绞车匀速吊起,

45、绞车的绳子绕过光滑的定滑轮A(图3-9a),滑轮由不计重量的杆 AB、AC支撑,A、B、C三点均为光滑较链。试求AB、AC所受的力。只供学习与交流图3-9解 杆AB和AC都是二力杆,其受力如图39b所示。假设两杆都受拉。取滑 轮连同销钉A为研究对象。重物G通过绳索直接加在滑轮的一边。在其匀速上升时,拉力Fti = G,而绳索又在滑轮的另一边施加同样大小的拉力,即Fti=Ft2。受力图如图39c所示,取坐标系Axy。FT22_. 1222Fti0列平衡方程由2X=0解得Fac= 63.2kN由EY=0FAB FAC4 FT2 1=7 0解得 FAB = 41.6kN%" 311 2力F

46、ac是负值,表示该力的假设方向与实际方向相反,因此杆 AC是受压杆。例36连杆机构由三个无重杆较接组成 (如图310a),在较B处施加一已知 的竖向力Fb,要使机构处于平衡状态,试问在较 C处施加的力Fc应取何值?图 3-10解 这是一个物体系统的平衡问题。从整个机构来看,它受四个力 Fb、Fc、Fa、 Fd不是平面汇交力系(图a),所以不能取整体作为研究对象求解。 要求解的未知力F 作用于较C上,较C受平面汇交力系的作用,所以应该通过研究较 C的平衡来求解。钱C除受未知力Fc外,还受到二力杆BC和DC的约束反力Fab和Fbc和作用(图 C)。这三个力都是未知的,只要能求出 Fab和Fbc之中

47、的任意一个,就能根据较 C的 平衡求出力Fc。钱B除受已知力Fb的作用外,还受到二力杆 AB和BC杆的约束反力Fba和Fbc 的作用。通过研究较B的平衡可以求了 BC杆的约束反力Fbc。综合以上分析结果,得到本题的解题思路:先以较B为脱离体求BC杆的反力Fbc; 再以较C为脱离体,求未知力Fc。(1)取较B为脱离体,其受力图如图(b)所示。因为只需求反力Fbc,所以选取 x轴与不需求出的力Fba垂直。由平衡方程2 X=0Fb cos45o+ F bccos45o=0解得Fbc= Fb(2)取C为脱离体,其受力图如图(c)所示。图上力Fcb的大小是已知的,即 Fcb=Fbc= Fb。为求力Fc的

48、大小,选取x轴与反力Fcd垂直,由平衡方程2X=0-Fcb-FbcCOs45o=0解得Fc2Fb通过以上分析和求解过程可以看出,在求解平衡问题时,要恰当地选取脱离体, 恰当地选取坐标轴,以最简捷、合理的途径完成求解工作。尽量避免求解联立方程, 以提高计算的工作效率。这些都是求解平衡问题所必须注意的。思考题31如图311所示的平面汇交力系的各力多边形中,各代表什么意义?图 3 1132 如图312所示,已知力 求出此力沿x轴方向的分力?F大小和其与x轴正向的夹角0,试问能否求出此力在x轴上的投影?能否SX=0图 3123-3同一个力在两个互相平行的轴上的投影有何关系?如果两个力在同一轴上的投影相

49、等,问这两个力的 大小是否一定相等?3-4平面汇交力系在任意两根轴上的投影的代数和分别等于零,则力系必平衡,对吗?为什么?35若选择同一平面内的三个轴 x、y和z,其中x轴垂直于y轴,而z轴是任意的(图313),若作用在 物体上的平面汇交力系满足下列方程式:能否说明该力系一定满足下列方程式: Z=0试说明理由。理论力学教案4课题第4讲一一第四章力矩与力偶学时61、熟悉力和力偶的基本概念及其性质,能熟练的计算平面问题中力对点之矩。教学目的2、掌握合力距定理。要求3、掌握平面力偶系的合成和平衡条件。1、力对点之距。2、力偶。主要内容3、平囿力偶系的合成和平衡条件。4、力的平移定理。1、合力矩定理。

50、重点难点2、平囿力偶系的合成和平衡条件。教学方法和手以讲授为主,使用电子教案段课后 作业 练习问题:P31: 1 , 2, 3, 4, 5, 6习题:P54: 1, 2, 4, 6, 7预习:第五章本次讲稿第四章力矩与力偶本章研究力矩、力偶和平面力偶系的理论。这都是有关力的转动效应的基本知识, 在理论研究和工程实际应用中都有重要的意义。第一节力对点之矩一、力矩的概念力不仅可以改变物体的移动状态,而且还能改变物体的转动状态。力使物体绕某 点转动的力学效应,称为力对该点之矩。以扳手旋转螺母为例,如图 4-1所示,设 螺母能绕点O转动。由经验可知,螺母能否旋动,不仅取决于作用在扳手上的力F的大小,而

51、且还与点。到F的作用线的垂直距离d有关。因此,用F与d的乘积不 作为力F使螺母绕点O转动效应的量度。其中距离d称为F对O点的力臂,点O称 为矩心。由于转动有逆时针和顺时针两个转向,则力F对O点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号,以符号 mo(F)表示,记为mo(F)=±Fh(41)通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。图41由图4- 1可见,力F对。点之矩的大小,也可以用三角形 OAB的面积的两倍 表示,即mo(F)=±2AABC(4 2)在国际单位制中,力矩的单位是牛顿 ?米(N?m)或千牛顿?米(kN?m)。由上述分析可得力矩的

52、性质:(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。力矩随矩心的 位置变化而变化。(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次说明力 是滑移矢量。(3)力的大小等于零或其作用线通过矩心时,力矩等于零。二、合力矩定理定理:平面汇交力系的合力对其平面内任一点的矩等于所有各分力对同一点之矩的代 数和。图4-2证明:设刚体上的A点作用着一平面汇交力系。力系的合力。在力系所在平面内 任选一点O,过O作oy轴,且垂直于OA。如图42所示。则图中Obi、Ob2、 Obn分别等于力Fi、F2、Fn和Fr在Oy轴上的投影Yi、丫2、Yn和Yr。现分 别计算Fl、F2、Fn和rFO

53、r南分ObO点YOA力矩。由图4- 2可以看出 mo(F2) Ob20A Y20A(1)根据合力投影定理m0(Fn) ObnOA YnOAm0(FR) ObrOA YrOAYR=Yl + Y2+ TYn两端乘以OA得YrOA = YiOA + YzOA+ +YnOA将式(1)代入得mo(FR)= mO(Fi)+ m0(F2)+ + m0(Fn)即mo(FR)=2mo(F)(4 3)上式称为合力矩定理。合力矩定理建立了合力对点之矩与分力对同一点之矩的关 系。这个定理也适用于有合力的其它力系。例4-1试计算图4-3中力对A点之矩。图4-3解本题有两种解法。(1)由力矩的定义计算力F对A点之矩。先求

54、力臂do由图中几何关系有:d=ADsin % =(AB-DB)sin % =(AB-BCctg)sin % =(a-bctg % )sin % =asin % -bcos% 所以mA(F)=F ?d=F(asin % -bcos % )(2)根据合力矩定理计算力F对A点之矩。将力F在C点分解为两个正交的分力和,由合力矩定理可得mA(F)= mA(Fx)+ mu(Fy尸一Fx?b+ Fy?a= F(bcos % + asin% ) =F(asin % -bcos% ) 本例两种解法的计算结果是相同的,当力臂不易确定时,用后一种方法较为简便。第二节力偶一、力偶力偶矩在日常生活和工程实际中经常见到物

55、体受动两个大小相等、方向相反,但不在同一直线上的两个平行力作用的情况。例如,司机转动驾驶汽车时两手作用在方向盘上的力(图44a);工人用丝锥攻螺纹时两手加在扳手上的力(图44b);以及用两此文档仅供收集于网络,如有侵权请联系网站删除个手指拧动水龙头(图4-4c)所加的力等等。在力学中把这样一对等值、反向而不 共线的平行力称为力偶,用符号 (F ,F')表示。两个力作用线之间的垂直距离称为 力偶臂,两个力作用线所决定的平面称为力偶的作用面。图4-4实验表明,力偶对物体只能产生转动效应,且当力愈大或力偶臂愈大时,力偶使刚体 转动效应就愈显著。因此,力偶对物体的转动效应取决于:力偶中力的大小、力偶的 转向以及力偶臂的大小。在平面问题中,将力偶中的一个力的大小和力偶臂的乘积冠 以正负号,(作为力偶对物体转动效应的量度,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论