




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四十六课时函数y Asin( x )的图象与性质(2)第8页共5页【学习目标】1 . 了解函数y Asin( x )图象的特征 2 .能由三角函数的图象(或图象特征)求函数的表达式【题型示例】)的图象,根据图中的数据,写例1如下图,它是函数 y Asin( x ) ( A 0,0,| |出该函数解析式【分析】观察图象,发现它的最大.最小值,找出它的周期.【解】由图得A=5, T ,222222T T 3,则 ,所以 y 5sin(-x 一),T333-5k - -(例1)(一 ,3),最低点(1,5),求它的12122 所求的表达式为 y 5sin( -x ) 33例2.已知函数y Asin
2、( x ) b在同一个周期内有最高点解析式.【分析】根据最高点和最低点,得到A b及周期.【解】. 2A=3- (-5) =8, . A=4 -2b=3+ (-5) =-2 , . . b=-1.T27_12 12y 4sin(2 x ) 1 ,又图象过(一,3),从而 3 4sin() 1,得126故 y 4sin(2 x -) 1 3(注:答案不唯一)例3.已知函数y Asin( x ) ( A 0,0,)图象的最高点为(2,J2),由这个最高点到相邻最低点间的曲线与x轴交于点(6, 0)。(2,72),得 72 V2sin(-411 一一16,频率f ,初相T 16(1)求这个函数的表达
3、式,并指出该函数的周期、频率、初相;(2)求该函数的单调递减区间.【分析】读懂题意,转换成图象,发现它的振幅和周期【解】(1)由题意,得A=V2, T 6 2 4, T 16, 4则y J5sin( x ),又图象经过8所以y J2sin(x 一)周期T 84(2)由一 2k -x282k ,解得 2 16k x 10 16k所以该函数的递减区间为 2 16k,1016k.【拓展创新】已知下图是函数 y 2sin( x ) ( | -)的图象2(1)求,的值(2)求函数图象的对称轴方程,对称中心坐标。【分析】通过特殊点,利用待定系数法确定函数中的的【解】(1)由图象得T11126 解得 2,所
4、以 y 2sin(2 x -) 6(2)函数图象的对称轴方程为2x一,即x对称中心(x。,0),则2x0 k66(k Z) k一,所以对称中心坐标为 ( 一,0)( k Z)12212【反思升华】1.振幅A与最值有关;与周期T有关;初相用待定系数法求;2.待定系数法过程中选择的点要慎重3.要善于观察图象,抓住图象的特征【学习评价】1 .为了得到函数y 2sin(- -) x R的图像,只需把函数y 2sinx,x R的图像上所有点 36 A.向左平移个单位长度, 6再把所得各点的横坐标缩短到原来的B.向右平移个单位长度, 6再把所得各点的横坐标缩短到原来的1-倍31八倍3(纵坐标不变)(纵坐标
5、不变)C.向左平移个单位长度, 6再把所得各点的横坐标伸长到原来的(纵坐标不变)D.向右平移个单位长度, 6再把所得各点的横坐标伸长到原来的(纵坐标不变)2.函数3sin(2 x )图象的一条对称轴是直线6A.xB. x C. x D.663.函数sin(3x )图象的一个对称中心的横坐标是 4A.B.C.D.124.下列函数中,图象的一部分如右图所示的是A. y sin x B.6y sin 2x 6C. y COS 4x 一 D.3y COS 2x 一 65.函数y 5sin(2 x )是偶函数,则 的值为A. k ,(k Z) B. (2k 1) ,(k Z) C.2k -,(k Z)
6、D.26.函数 f(x) 3sin 2x的图象为C,图象C关于直线x1112对称;函数f (x)在区间5内是增函数;由y 3sin 2x的图象向右平移 一个单位长度可以得到图象C .以上三个论断中,正确论断的个数是()A. 0B. 1C. 2D. 37 .若函数yAsin(x)B的最大值是7,最小值是-3,则它的振幅是8 .若函数yAsin(x)(0)与x轴的两个相邻交点的坐标分别为(4, 0),(10, 0),则=9 .若关于x的方程4sin(x )2m 1有解,则m的取值范围为.310 .函数y Asin( x )(A 0,0,| | 一)在一个周期的图象如下图,则它的表达式2为,方程f(x) lgx的实根的个数是 第10题11.若函数 f (x) sin( x )(部分)如图所示,求它的表达式0,1 I -)的图象2第11题12 .设函数 y sin(2x )m 6f(x)的最大值,并指出x取何值时,f(x)(1)写出函数f (x)的最小正周期及单调区间(2)若X ,时,函数f (x)的最小值为2,求函数 6 3取最大值.13 .已知函数y Asin( t )(A 0,0,| | )的图象在y轴上的截距为1,它在y轴右侧的2第一个最大值点和最小值点分别为(x0,2)和(x0 3 , 2)(1)求f (x)的解析式;(2)将f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年员工工资保密协议模板
- 第四单元-两、三位数除以一位数(单元测试)-苏教版数学三年级上册(含解析)-
- 期末学业水平测试题(卷)-语文三年级上册(部编版)
- 2025年黑龙江建筑职业技术学院单招职业倾向性测试题库1套
- 2025年湖南省湘潭市单招职业倾向性测试题库参考答案
- 中学非球类运动教学设计
- 专题18 电功率-2025年中考《物理》一轮复习知识清单与解题方法
- 2025年度土地承包种植与农业科技成果转化合同
- 2025年度云计算服务器采购及运维服务合同
- 2025年度员工向公司借款合同争议处理规则合同
- 北京某中学2024-2025学年九年级上学期开学考数学试卷
- 三下 第11课 《在线学习工具》教案 浙教版2023信息科技
- 2024年高考真题-英语(新高考Ⅱ卷) 含解析
- 江苏省无锡市惠山区2024年统编版小升初考试语文试卷(含答案解析)
- JGJ/T235-2011建筑外墙防水工程技术规程
- 信息科技课的跨学科主题学习PP义务教育课程方案和课程标准国家级示范培训课件
- 五年级下册英语作文训练-外研版(三起)
- 第七节碎石路基施工方案
- 三年级数学兴趣班纲要及教案
- 记者行业现状分析及发展趋势
- 江苏省南通市海安中学2025届高一下生物期末综合测试试题含解析
评论
0/150
提交评论