中考数学常见题型几何动点问题_第1页
中考数学常见题型几何动点问题_第2页
中考数学常见题型几何动点问题_第3页
中考数学常见题型几何动点问题_第4页
中考数学常见题型几何动点问题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学压轴题型研究(一)动点几何问题例1:在ABC中,B=60,BA=24CM,BC=16CM,(1)求ABC的面积;ACB(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动。如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,PBQ的面积是ABC的面积的一半?(3)在第(2)问题前提下,P,Q两点之间的距离是多少?例2: ()已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A B C E运动,到达点E.若点P经过的路程为自变量x,APE的面积为函数y, (1)写出

2、y与x的关系式 (2)求当y时,x的值等于多少? 例3:如图1 ,在直角梯形ABCD中,B=90,DCAB,动点P从B点出发,沿梯形的边由BC D A 运动,设点P运动的路程为x ,ABP的面积为y , 如果关于x 的函数y的图象如图2所示 ,那么ABC 的面积为( )xAOQPByA32B18C16 D10 例4:直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标例5:

3、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;CPQBAMN(2)线段在运动的过程中,四边形的面积为,运动的时间为求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围图(3)CcDcAcBcQcPcEc例6:如图(3),在梯形中,厘米,厘米,的坡度动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动

4、点到达终点时,另一个动点也随之停止设动点运动的时间为秒(1)求边的长;(2)当为何值时,与相互平分;(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。AQCDBP 例7:如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度

5、从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?例8:如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形例9:(如图,在直角梯形ABCD中,ADBC,ABC90,AB12cm,AD8cm,BC22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点

6、时,另一个动点也随之停止运动设运动时间为t(s)(1)当t为何值时,四边形PQCD为平行四边形?ABOCDPQ(2)当t为何值时,PQ与O相切?OAPDBQC例10. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3

7、)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由ABDCPQMN(第25题) 练习1BCPODQABPCODQA1正方形的边长为,在对称中心处有一钉子动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为(1)当时,求与之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求值;(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;(4)当时,请在给出的直角坐标系中画出与之间的函数图象解 (1)当时,即 (2)当时,橡皮筋刚好触及钉子, (3)

8、当时,即 作,为垂足当时,即 或(4)如图所示:2.如图,平面直角坐标系中,直线AB与轴,轴分别交于A(3,0),B(0,)两点, ,点C为线段AB上的一动点,过点C作CD轴于点D.(1)求直线AB的解析式;(2)若S梯形OBCD,求点C的坐标;(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与OBA相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.解 (1)直线AB解析式为:y=x+ (2)方法一:设点坐标为(x,x+),那么ODx,CDx+由题意: ,解得(舍去)(,)方法二:,,由OA=OB,得BAO30,AD=CDCDAD可得CD AD=,ODC(,)(

9、)当OBPRt时,如图 若BOPOBA,则BOPBAO=30,BP=OB=3,(3,) 若BPOOBA,则BPOBAO=30,OP=OB=1(1,)当OPBRt时 过点P作OPBC于点P(如图),此时PBOOBA,BOPBAO30过点P作PMOA于点M方法一: 在RtPBO中,BPOB,OPBP 在RtPO中,OPM30, OMOP;PMOM(,)方法二:设(x ,x+),得OMx ,PMx+由BOPBAO,得POMABOtanPOM= ,tanABOC=x+x,解得x此时,(,) 若POBOBA(如图),则OBP=BAO30,POM30 PMOM(,)(由对称性也可得到点的坐标)当OPBRt

10、时,点P在轴上,不符合要求.综合得,符合条件的点有四个,分别是:(3,),(1,),(,),(,)3如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BCOA,OA=7,AB=4, COA=60,点P为x轴上的个动点,点P不与点0、点A重合连结CP,过点P作PD交AB于点D (1)求点B的坐标; (2)当点P运动什么位置时,OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得CPD=OAB,且=,求这时点P的坐标。解 (1)作BQx轴于Q. 四边形ABCD是等腰梯形,BAQCOA60在RtBQA中,BA=4,BQ=ABsinBAO=4sin60=AQ=ABcosBAO=4

11、cos60=2,OQ=OA-AQ=7-2=5点B在第一象限内,点B的的坐标为(5, )(2)若OCP为等腰三角形,COP=60,此时OCP为等边三角形或是顶角为120的等腰三角形若OCP为等边三角形,OP=OC=PC=4,且点P在x轴的正半轴上,点P的坐标为(4,0)若OCP是顶角为120的等腰三角形,则点P在x轴的负半轴上,且OP=OC=4点P的坐标为(-4,0)点P的坐标为(4,0)或(-4,0)(3)若CPD=OABCPA=OCP+COP而OAB=COP=60,OCP=DPA此时OCPADP,AD=AB-BD=4-=AP=OA-OP=7-OP得OP=1或6点P坐标为(1,0)或(6,0)

12、.图BAQPCH4 已知:如图,在RtABC中,C=900,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ若设运动的时间为t(s)(0t2),解答下列问题:(1)当t为何值时,PQBC?(2)设AQP的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把RtABC的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图,连接PC,并把PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由 解:(1)在RtABC中,由题意知:AP = 5t,AQ = 2t,若PQBC,则APQ ABC, (2)过点P作PHAC于HAPH ABC, (3)若PQ把ABC周长平分,则AP+AQ=BP+BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论