一元二次方程常见题型_第1页
一元二次方程常见题型_第2页
一元二次方程常见题型_第3页
一元二次方程常见题型_第4页
一元二次方程常见题型_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高频题-易错题 专项练习一 元 二 次 方 程一、知识结构:一元二次方程二、考点精析考点一、概念(1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。 (2)一般表达式: 难点:如何理解 “未知数的最高次数是2”:该项系数不为“0”;未知数指数为“2”;若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例1、下列方程中是关于x的一元二次方程的是( )A B C D 变式:当k 时,关于x的方程是一元二次方程。例2、方程是关于x的一元二次方程,则m的值为 。针对练习:1、方程的一次项系数是 ,常数项是 。2、若方程是关于x的一元一

2、次方程,求m的值;写出关于x的一元一次方程。3、若方程是关于x的一元二次方程,则m的取值范围是 。4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是( )A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解概念:使方程两边相等的未知数的值,就是方程的解。应用:利用根的概念求代数式的值; 典型例题:例1、已知的值为2,则的值为 。例2、关于x的一元二次方程的一个根为0,则a的值为 。例3、已知关于x的一元二次方程的系数满足,则此方程必有一根为 。例4、已知是方程的两个根,是方程的两个根,则m的值为 。针对练习:1、已知方程的一根是2,则k为 ,另

3、一根是 。2、已知关于x的方程的一个解与方程的解相同。求k的值; 方程的另一个解。3、已知m是方程的一个根,则代数式 。4、已知是的根,则 。5、方程的一个根为( )A B 1 C D 6、若 。考点三、解法方法:直接开方法;因式分解法;配方法;公式法关键点:降次类型一、直接开方法:对于,等形式均适用直接开方法典型例题:例1、解方程: =0; 例2、若,则x的值为 。针对练习:下列方程无解的是( )A. B. C. D.类型二、因式分解法:方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如, ,典型例题:例1、的根为( )A B C D 例2、若,则4x+y的值为 。变式1:

4、 。变式2:若,则x+y的值为 。变式3:若,则x+y的值为 。例3、方程的解为( )A. B. C. D.例4、解方程: 例5、已知,则的值为 。变式:已知,且,则的值为 。针对练习:1、下列说法中:方程的二根为,则 . 方程可变形为正确的有( )A.1个 B.2个 C.3个 D.4个2、以与为根的一元二次方程是()A BC D3、写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: 写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: 4、若实数x、y满足,则x+y的值为( )A、-1或-2 B、-1或2 C、1或-2 D、1或25、方程:的解是 。6、已知,且,求的值。

5、7、方程的较大根为r,方程的较小根为s,则s-r的值为 。类型三、配方法在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、 试用配方法说明的值恒大于0。例2、 已知x、y为实数,求代数式的最小值。例3、 已知为实数,求的值。例4、 分解因式:针对练习:1、试用配方法说明的值恒小于0。2、已知,则 .3、若,则t的最大值为 ,最小值为 。4、如果,那么的值为 。类型四、公式法条件:公式: ,典型例题:例1、选择适当方法解下列方程: 例2、在实数范围内分解因式:(1); (2). 说明:对于二次三项式的因式分解,如果在有理数范围内不能分解,一般情况要用求根公

6、式,这种方法首先令=0,求出两根,再写成=.分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用求代数式的值; 解二元二次方程组。典型例题:例1、 已知,求代数式的值。例2、如果,那么代数式的值。例3、已知是一元二次方程的一根,求的值。例4、用两种不同的方法解方程组说明:解二元二次方程组的具体思维方法有两种:先消元,再降次;先降次,再消元。但都体现了一种共同的数学思想化归思想,即把新问题转化归结为我们已知的问题.考点四、根的判别式根的判别式的作用:定根的个数;求待定系数的值;应用于其它。典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是

7、 。例2、关于x的方程有实数根,则m的取值范围是( )A. B. C. D.例3、已知关于x的方程(1)求证:无论k取何值时,方程总有实数根;(2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。例4、已知二次三项式是一个完全平方式,试求的值.例5、为何值时,方程组有两个不同的实数解?有两个相同的实数解?针对练习:1、当k 时,关于x的二次三项式是完全平方式。2、当取何值时,多项式是一个完全平方式?这个完全平方式是什么?3、已知方程有两个不相等的实数根,则m的值是 .4、为何值时,方程组(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解. 5

8、、当取何值时,方程的根与均为有理数?考点五、方程类问题中的“分类讨论”典型例题:例1、关于x的方程有两个实数根,则m为 ,只有一个根,则m为 。 例2、 不解方程,判断关于x的方程根的情况。例3、如果关于x的方程及方程均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k的值;若没有,请说明理由。考点六、应用解答题“碰面”问题;“复利率”问题;“几何”问题;“最值”型问题;“图表”类问题典型例题:1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅

9、速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少,第三年比第二年减少,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,)4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:(1)当销售价定为每千克55元时,计算月销售量和月销售利润。(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应

10、定为多少?5、将一条长20cm的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。(1)要使这两个正方形的面积之和等于17cm2,那么这两段铁丝的长度分别为多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由。(3)两个正方形的面积之和最小为多少?6、A、B两地间的路程为36千米.甲从A地,乙从B地同时出发相向而行,两人相遇后,甲再走2小时30分到达B地,乙再走1小时36分到达A地,求两人的速度.考点七、根与系数的关系前提:对于而言,当满足、时,才能用韦达定理。主要内容:应用:整体代入求值。典型例题:例1、已知一个直角三角形的两直角边长恰是方

11、程的两根,则这个直角三角形的斜边是( ) A. B.3 C.6 D.例2、已知关于x的方程有两个不相等的实数根,(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?若存在,求出k的值;若不存在,请说明理由。例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道原来的方程是什么吗?其正确解应该是多少?例4、已知,求 变式:若,则的值为 。例5、已知是方程的两个根,那么 .针对练习:1、解方程组2已知,求的值。3、已知是方程的两实数根,求的值。4、已知关于X的方程,问:是否存

12、在实数m,使方程的两个实数根的平方和等于56,若存在,求出m的值,若不存在,请说明理由。一元二次方程复习一) 一元二次方程的定义是一元二次方程的一般式,只含有一个末知数、且末知数的最高次数是2的方程,叫做一元二次方程。这三个方程都是一元二次方程。求根公式为二)。a是二次项系数;b是一次项系数;c是常数项,注意的是系数连同符号的概念。这些系数与一元次方程的根之间有什么样的关系呢?1、当0时方程有2个不相等的实数根;2、当0时方程有两个相等的实数根;3、当 0时方程无实数根.4、当0时方程有两个实数根(方程有实数根);5、ac0)0有两个不相等的实数根C0两根同号b0有两个负根不相等b0有两个正根

13、不相等C0负根绝对值较大(正根绝对值较小)b0一根为0另一个根为负根b0有两个相等的负根b01有两个不相等的负实数根 x1.x20 x1+x202有两个不相等的正实数根 x1.x20 x1+x20 03负根的绝对值大于正根的绝对值 x1.x2 0 x1+x204两个异号根正的绝对值较大 x1.x20 05两根异号,但绝对值相等 x1.x206一个负根,一个零根 x1.x2 0 x1+x20 x1+x20 08有两个相等的负根 x1.x20 x1+x20 x1+x20010有两个相的等的根都为零 x1.x20x1+x20011两根互为倒数 x1.x21 12两根互为相反数 0 x1+x2013两

14、根异号 0 14两根同号 0 x1.x2015有一根为零 0 16有一根为1 0 x1.x20 a+b+c=0 17有一根为-1 0 a-b+c=018无实数根 0 20 ax2+bx+c (a0)这个二次三项式是完全平方式 021方程ax2+bx+c 0 (a0)(a、b、c都是有理数)的根为有理根,则是一个完全平方式。22方程ax2+bx+c 0 (a0)的两根之差的绝对值为:23 0,方程ax2+bx+c 0 (a0)有相等的两个实数根。24 0, 方程ax2+bx+c 0 (a0)无实数根.25方程ax2+bx+c 0 (a0)一定有一根为“1” 0 a+b+c=026方程ax2+bx

15、+c 0 (a0)的解为27方程ax2+bx+c 0 (a0)若0则 注:凡是题中出现了x1.x201例题 m为何值时,方程 有两个相等的实数根;无实数根;有两个不相等的实数根;有一根为0;两根同号;有一个正根一个负根;两根互为倒数。2例题k为何值时关于x的方程(m为有理数)的根为有理数。3例题不论m为何值时都可以分解成二个一次因式的积4例题 已知方程的两根一个大于1,另一个根小于1,求m的值的范围。5例题已知方程ax2+bx+c 0 (a0)的实数根为m、n求下列对称式子的值;。6例题已知实数a、b满足,且求的值。7例题已知 其中p、q为实数。求的值。8用配方法求下面关于x的一元二次方程ax

16、2+bx+c 0 (a0)9已知是一个完全平方式,若a0试证明:方程无实数解。10已知关于x的方程有两个不相等的实数根,(1)求k的取值范围。(2)化简11、求非对称性式子的值(解题思想是逐次降次)例1已知例2设a、b是方程的两个实数根,求的值。12用适当的方法解下列方程(说明选用的理由) 六)“归旧”思想在解一元二次方程中的应用 “归旧”就是把待解决的问题,通过某种转化,归结为能用已掌握的旧知识去解决的问题。一元二次方程有直接开平方法、配方法、因式分解法和公式法,这几种解法,都是用“归旧”的数学思想方法求解。下面就各种方法分别加以说明。直接开平方法:适用于等号左边是一个完全平方式,右边是一个

17、非负实数的形式,形如(mx+n)2=p (m0,p0)的方程。我们可以利用平方根的定义“归旧”为两个一元一次方程去解,即有一元一次方程为mx+n=,分别解这两个一元一次方程就得到原方程的两个根。用简明图表可表示为:直接开平方法:形如(mx+n)2=p (m0,p0)两个一元一次方程。配方法:最适用于二次项系数为1,一次项系数为偶数的形式的一元二次方程,形如x2+2kx+m=0(当然一般的形如ax2+bx+c=0 a0 也可用,但不一定是最合适的方法)。这类方程我们可以通过已掌握的配方的手段,把原方程“归旧”为上述形如(mx+n)2=p (m0,p0) 的方程,然后再用直接开平方法的方法求解。用

18、简明图表可表示为:配方法:一元二次方程 形如(mx+n)2=p (m0,p0)的方程因式分解法:这种方法平时用的最多,最适用于等式左边能分解成几个一次因式的积、而右边必须为零的形式的一元二次方程方程。这类方程我们可以通过已掌握的因式分解的手段,把原方程转化为形如(a1x+c1)(a2x+c2)=0方程,从而“归旧”为a1x+c1=0 、a2x+c2=0 ,再分别求出这两个一元一次方程的根,就得到原一元二次方程的两个解。用简明图表可表示为: 因式分解法:一元二次方程两个一元一次方程 公式法:公式法的实质就是配方法,只不过在解题时省去了配方的过程,所以解法简单。但计算量较大,只有在不便运用上述三种

19、方法,且各项系数的绝对值为较小的数值情况下才考虑使用该方法。由此可见以上四种解法都是运用了归旧的数学思想,把新东西转换成熟悉的旧的东西 去解决。归旧思想在初中数学中还有许多运用:如解二元一次方程归旧为一元一次方程,分式方程归旧为整式方程,二元二次方程组归旧为二元一次方程组或代入消元归旧为一元二次方程,平行四边形、矩形、梯形通过添加辅助线归旧为三角形问题等,由此可见熟练掌握归旧数学思想,对增强解题能力,改善知识结构,提高数学素养大有裨益。一元二次方程应用题总复习一、列方程解应用题的一般步骤是1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的

20、要注明单位;3.列:列代数式,列方程;4.解:解所列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.注:列方程解应用题的关键是: 找出等量关系二、一元二次方程,其应用题的范围也比较广泛,归纳起来可大致有以下几种类型:一)求互相联系的两数:连续的整数:设其中一数为x,另一数为x+1连续的奇数:设其中一数为x,另一数为x+2连续的偶数:设其中一数为x,另一数为x+2和一定的两数(和为a):设其中一数为x,另一数为a-x差一定的两数(差为a):设其中一数为x,另一数为x+a积一定的两数(积为a):设其中一数为x,另一数为a/x商一定的两数(商为

21、a):设其中一数为x,另一数为ax(a/x)例:两个相邻偶数的积是168,求这两个偶数。解:设其中一数为x,另一数为x+2,依题意得:x(x+2)168x2+2x-168=0(x-12)(x+14)0x1=12,x2 =14当x12时,另一数为14;当x-14时,另一数为-12.答:这两个偶数分别为12、14或-14、-12.二)求直角三角形的边:面积S一定,两直角边和(和为a)一定:设其中一边为x,另一边为a-x,则1/2x(a-x)=S面积S一定,两直角边差(差为a)一定:设其中一边为x,另一边为x+a,则1/2x(x+a)=S斜边c一定,两直角边和(和为a)一定:设其中一边为x,另一边为

22、a-x,则x2+(a-x)2=c2斜边c一定,两直角边差(差为a)一定:设其中一边为x,另一边为x+a,则x2+(x+a)2=c2例:一个直角三角形的两条直角边相差3cm,面积是9cm,求较长的直角边的长。三)求矩形的边:例:利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形场地?四)赛制循环问题:单循环:设参加的球队为x,则全部比赛共1/2x(x-1)场;双循环:设参加的球队为x,则全部比赛共x(x-1)场;【单循环比双循环少了一半】五)利滚利问题:年利息本金年利率年利率为a%存一年的本息和:本金(1+年利率) ,即本金(1+ a%)存两年的本息和:本金(1+年利

23、率)2, 即本金(1+a%)2存三年的本息和:本金(1+年利率)3, 即本金(1+a%)3存n年的本息和:本金(1+年利率)n, 即本金(1+a%)n例:我村2006年的人均收入为1200元,2008年的人均收入为1452元,求人均收入的年平均增长率。人均收入的年平均增长率为10%。六)传染问题:(几何级数)传染源:1个【 每一轮1个可传染给x个】【前后轮患者数的比例为1:(1+x)】患者: 第一轮后:共(1+x)个第二轮后:共(1+x)(1+x),即(1+x)2个第三轮后:共(1+x)3,即(1+x)3个第n轮后:共(1+x)n个例:某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染

24、后就会有81台电脑被感染。请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?三、应用举例一)数字型1、 两个数的和是-7,积是12,则这两个数是多少?2、5个连续正数,前3个数的平方比后两个数的积小1,这5个连续整数分别是多少?3、一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,求这个两位数是多少?二)百分数应用题(含增长率方面的)题型1、 某企业2004年初投资100万元生产适销对路的产品,2004年底将获得的利润与年初的投资和作2005年的投资,到2005年底,两年共获利润

25、为56万元,已知2005年的年获利比2004的年获利率多10个百分点(即2005的年获利率是2004年的年获利率与10%的和),求2004年和2005年获利率各是多少?2、 某工厂一月份生产某种机器100台,计划二、三月份共生产280台。设二、三月份每月的平均增长率为X,求增长率为多少?3、 某市土地沙漠化严重,2005年沙漠化土地面积为100Km2,经过综合治理,希望到2007年沙漠化土地面积降到81 Km2,如果每年治理沙漠化土地的降低百分率相同,求每年的沙漠化土地的降低百分率。三)传染病毒应用题1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染,请你用

26、学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?2、 中国内地部分养鸡场突发禽流感疫情,某养鸡场中、一只带病毒的小鸡经过两天的传染后、鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只鸡传染了几只小鸡?四) 银行利率应用题1、 某人将2000元按一年定期存银行。到期后取出1000元,并将剩下的1000元及利息再按一年定期存入银行,到期后取得本息共计1091.8元。求银行一年定期储蓄的利率是多少?五)销售利润方案类题(1)经济类一1、某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少

27、销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元? 解:设每件售价x元,则每件利润为x-8, 销售量则为200-(x-10)/0.5*10=200-20(x-10) 所以每天利润为640元时,则有 (x-8)200-20(x-10)=640 则有x2-28x+192=0 即(x-12)(x-16)=0 所以x=12或x=16。 即当每件售价为12元或16元时,每天利润为640元2、 神州行旅行社为吸引市民组团去大纵湖风景区旅游,推出如下收费标准,如果人数不超过25人,人均旅游费用为100元,如果人数超过25人

28、,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元,某单位组织员工去大纵湖风景区旅游,共支付给神州旅行社旅游费用2700元,请问该单位这次共有多少员工去旅游了。3、苏宁服装商场将每件进价为30元的内衣,以每件50元售出,平均每月能售出300件,经过试销发现,每件内衣涨价10元,其销量就将减少10件,为了实现每月8700元销售利润,假如你是商场营销部负责人,你将如何安排进货?4、某越剧团准备在市大剧院演出,该剧院能容纳1200人,经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数就减少30张,如果想获得36750元的门票收入,票价应定为多少元?5、某

29、商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减库存,商场决定采取适当的减价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多销售出2件,1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?2)每件衬衫降价多少元时,商场平均每天盈利最多? (2)经济类二(经济类试题一元二次方程的实际应用)近年来方程的应用与相关经济类试题呈逐渐增多的趋势现举例说明:例1:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件

30、,若商场平均每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫降价x元,则每件衬衫盈利(40x)元,降价后每天可卖出(20+2x)件,由关系式:总利润=每个商品的利润售出商品的总量,可列出方程例2:某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)分析:设三、四月份平均每月增长的百分率为x,二月份销售额为60(110%)万元,三月份的销售额是二月份的(1+x)倍,即三月份销售额为60(11

31、0%)(1+x)万元,四月份的销售额是三月份的(1+x)倍,则四月份的销售额为60(110%)(1+x)2万元,其等量关系为:四月份销售额=96例3:某商店从厂家以每件21元的价格购进一批商品,该商店可自行定价,若每件商品售价为a元,则可卖出(35010a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需卖出多少件商品,每件售价应为多少元?分析:本题中涉及到的数量关系列表如下:进价售价单件利润售出数量利润21aa2135010a400例4(本题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:信息1:甲、乙两种商品的进货单价之和是5元;信息2:甲商品零售单价比进

32、货单价多1元,乙商品零售单价比进货单价的2倍少1元信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元. 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 六)函数与方程1.某工厂生产的某种产品质量分为10个档次.第1档次(最低档次)的产品一天能

33、生产76件,每件利润10元.媒体搞一个档次,每件利润增加2元,但每天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1x10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.七)信息题1、某开发区为改善居民住房条件,每年都要建一批住房,这样人均住房面积逐年增加,该开发区2005年至2006年,每年年底人口总数和人均住房面积的统计结果如图所示,请根据下列两图提供信息解答问题:(1)该区2005年和2006年这两年,哪一年比上年增加的住房面积多?多增加多少平方米?201817万人200520062006年m2/人OO

34、2004200420052018.617(2)预计到2008年年底,该区人口是总数将比2006年年底增加2万人,为使到2007年年底该区人均住房面积达到22m2/人,试求2006年,2008年两年该区住房总面积的年平均增长率。2、某开发区为改善居民住房条件,每年都新建一批住房,人均住房面积逐年增加人均住房面积=(该区住房总面积/该区人口总数)(单位:m2/人),该开发区2004年至2006年每年年底人口总数和人均住房面积的统计如图1,图2请根据图1,图2提供的信息解答下面问题:(1)该区2005年和2006年两年中哪一年比上一年增加的住房面积多多增加多少平方米?(2)由于经济发展需要,预计到2

35、008年底该区人口总数比2006年底增加2万人,为使到2008年底该区人均住房面积达到11m2/人,试求2007年和2008年这两年该区住房总面积的年平均增长率为多少?八)、背景题1、某电厂规定:该厂家属区的每户居民如果一个月的用电量不超过A kWh,那么这个月这户只需要交10元电费;如果超过A kWh,则这个月除了仍要交10元用电费外,超过部分还要按每度元交费。(1)该厂某户居民2月份用电90 kWh,超过了规定的A kWh,则超过部分应交电费多少元(用A的代数式表示)。(2)下表是这户居民3月、4月份用电情况和交费情况:月份用电量/ kWh交电费总数/元3602544510根据上表的数据,

36、计算电厂规定的A kWh是多少?2、【实际背景】预警方案确定:设如果当月W6,则下个月要采取措施防止“猪贱伤农” 【数据收集】 今年2月5月玉米、猪肉价格统计表 月 份2345玉米价格(元/500克)0.70.80.91猪肉价格(元/500克)7.5m6.256【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增

37、长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米请你预测8月时是否要采取措施防止“猪贱伤农” 九)、古诗问题例:读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?十)、象棋比赛例:象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多

38、少个选手参加.十一)、几何类题(1)等积变形例1将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理图2图4图3。(2)动态几何问题例:如图4所示,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.(3)梯子问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论