版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第15课时 多边形、平行四边形和证明京华中学复习教学目标:1、 能说出多边形的内角和定理和外角和定理;知道平行四边形的性质和判断;2、 会求多边形的内角和,并能判定一个多边形是几边形;会进行有关平行四边形的边角的简单计算;能运用性质和判定进行相关的证明;能识别中心对称图形。3、能用数形结合的思想解决平行四边形中的计算和证明。复习教学过程设计、【唤醒】一、填空内角和定理:n 边形的内角和等于1、 多边形的有关性质 外角和定理:n 边形的外角和等于对角线 :n 边形的对角线共有 条多边形 两组对边分别平行-_ 2、 四边形 一组对边平行且相等-略3、其它多边形二、判断:1、四边形具有平行四边形所有
2、的性质. ( 2、平行四边形的对角线互相平分且相等. ( 3、平行四边形既是轴对称图形又是中心对称图形.( 4、一组对边平行,另一组对边相等的四边形是平行四边形.( 5、一组对边平行,一组对角相等的四边形是平行四边形.( 6、平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.( 7、正八边形和正方形的组合能够进行密铺. ( 三、选择:1、ABCD 的四个内角的度数的比A:B:C:D 可能是 ( A 、2:5:2:5B 、3:4:4:3C 、4:4:3:2D 、2:3:5:62、下列图形是中心对称图形的是 ( A B 、 C 、 D 、 3、若一个多边形的每一个内角都等于120
3、76;,则它是 ( A 、正方形B 、正五边形C 、正六边形D 、正八边形4、 如图,在ABCD 中,AE 平分DAB ,B=100°,则DEA= ( A 、100° B 、80°C 、60°D 、40°5、下列图形中,不能进行密铺的是 ( A 、正三角形B 、正方形C 、正六边形D 、正五边形性质:包括边、角、对角线、对称性等判定6、如图,在ABCD中,EF过对角线的交点O,交AD于E, 交BC于F,已知AB=4,BC=5,OE=1.5,则四边形EFCD的周长是 ( A、14B、12C、16D、10、【尝试】例1: 如图,ABCD的对角线AC
4、,BD相交于点O,由此你能得出哪些结论?试尽可能多的写出一些来.分析:分别从平行四边形的边、角、对角线方面去考虑,然后思考 从这些结论出发得出的新的结论。解:AB=CD ,AD=BC,DO=BO,AO=CO,ADC=ABC,DAB=DCB,ADB=DBC,BDC=ABD,DCA=CAB,ACB=DACADOCBO,DOCBOA,ADCCBA,ADBCBD,SDOC =SAOD=SAOB=SBOC等。提炼:对于这种结论开放的题目,要注意思维发散,灵活运用平行四边形的性质,从不同的角度去考虑。例2:图, 已知一个多边形的内角和是它的外角和的5倍,求这个多边形的边数。分析:注意多边形的外角和始终是3
5、60°解:设这个多边形是n边形,则(n-2×180°=5×360°,得 n=12答:这个多边形是十二边形。提炼:多边形的内角和与外角和既有区别,又有联系。多边形的内角和随边数的变化而变化,而外角和是一个定值。已知内角和与外角和的关系,可以运用方程思想解决。例3:如图:在ABC中,D、E分别是AB、AC的中点,F是DE延长线上的点,且EF=DE,则 图中的平行四边形有哪些?说说你的理由。分析:已知条件中AE=EC,DE=FE,不难得到四边形ADCF是平行四边形,然后推出ADCF,又可证到AD=CF,所以四边形DBCF也是平行四边形。解:ADCF,
6、DBCF理由:D、E分别是AB、AC的中点AE=EC,AD=DB,又EF=DE,四边形ADCF是平行四边形(对角线互相平分的四边形是平行四边形ABCF,AD=CF,BD=CF,四边形DBCF也是平行四边形(一组对边平行且相等的四边形是平行四边形提炼:运用数形结合的思想,灵活运用平行四边形的判定方法,关注由结论又可以推出新的结论。例4:如图,已知ABCD的周长为40,高AE=6,高AF=9,试根据条件设计一个问题,并进行解答.分析:答案不唯一,如:已知ABCD的周长和边上的高, 会想到平行四边形的面积,而平行四边形的面积要涉及底和高,所以可以设计求平行四边形的边长。解:设计的问题可以是:求AB、
7、BC的长。因为ABCD 的面积S=BC*AE=CD*AF所以6BC=9CD ,因此BC=23CD , 又因为ABCD 的周长为40,所以BC+CD=20,可解得AB=8,BC=12提炼:运用数形结合的思想,将已知条件和图形结合起来考虑。、【小结】1、 本节课主要内容:见唤醒中的“知识结构图”。2、 运用数形结合的思想、方程的思想解决平行四边形中的计算和证明。、【实践】(1 教师自行设计作业;(2 复习指导用书第88-90页第1、4、5、7、8、10、11、13、15、16、17题。第16课时 特殊平行四边形、梯形与证明京华中学复习教学目标:1、 能说出矩形、菱形、正方形、梯形的概念和性质,以及
8、四边形是矩形、菱形、正方形、等腰梯形的条件,了解它们之间的关系。知道直角三角形斜边上的中线等于斜边的一半。2、 会根据矩形、菱形、正方形、梯形的性质和判定进行运算和推理,理解顺次连接一个四边形的中点所构造的四边形是特殊的四边形。3、 能运用转化思想将梯形转化为平行四边形和三角形问题解决,并能运用类比、逆向联想及运动的思维方法来研究问题。复习教学过程设计:.【唤醒】一、 填空:1、 请同学们仿照图中已填写的部分将它们补充完整: 2、 对角线_的平行四边形是菱形。3、 对角线_的四边形是矩形。4、 直角三角形斜边上的中线等于_。5、 正方形具有而矩形不具有的性质是_ 。6、 请写出等腰梯形ABCD
9、(AB CD具有而一般梯形不具有的三个特征:_,_,_。7、 顺次连接矩形的四边中点所得的四边形是_形。二、 判断:1、角线互相垂直的四边形是菱形(4、腰梯形的两个底角相等(2、个角都相等的四边形是矩形(5、组对边平行的四边形是梯形(3、角线互相垂直且相等的四边形是正方形(三、选择:1、菱形的一个内角是120º,一边长是8,那么它较短的对角线长是(A.3B.4C.8D.82、梯形的上底长为6cm,过上底一个顶点引一腰的平行线,交下底所得的三角形的周长是19 cm,那么这个梯形的周长为(A.31 cmB.25 cmC.19 cmD.28cm3、若矩形一内角的平分线分长边为两部分的长分别
10、为2和3,则该矩形的面积为(A.6B.10C.15D.10或15 4、如图,四边形ABCD是正方形,四边形AEFC是菱形,则FAB等于(A.45ºB.30ºC.75º5、下列各组图形中,既是轴对称图形,又是中心对称图形的是(A.平行四边形、菱形、正方形B.等腰梯形、矩形、正方形C.等边三角形、矩形、圆D.菱形、正方形、圆.【尝试】例1、如图,把一张矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于O,写出一组相等的线段_(不包括 AB=CD,AD=BC分析:本题是开放性问题,答案不唯一,可采用两种方法:(1从条件入手,根椐对称性质、全等性质、矩形的性质等
11、,逐步深入分析,发现需要的结论;(2通过观察、比较找出可能相等的线段,再论证。解:BE=BC或CD=ED或AB=ED或OB=OD或OA=OE 。提炼:折叠的问题实质就是对称的问题,在折叠的问题中折痕所在的直线就是对称轴。在折痕两侧互相重合的部分是全等的图形,从而可以得到许多相等的边、角。例2、的对角线AC的垂直平分线与AD、BC分别交于E、F, 求证:四边形AFCE是菱形分析: 由于四边形AFCE的对角线互相垂直,那么只需证明对角线互相平分即可,故只需证OE=OF,而这可由证明AOECOF得到。证:(略提炼:解决此题的关键是要准确理解题意,EF是线段AC的垂直平分线。另一种方法证完后还可问学生
12、,还有其他方法吗?注重一题多解,激活学生的思维。例3、如图,两个四边形中,ADB=ACB=90º,E、F分别是DC、AB的中点。 (1观察两个图形,你发现了什么?在下面横线上简要写出你的发现(2试猜想EF与DC在位置上有无特殊关系?如有,请证明;如没有,请说明理由。分析:(1认真审题,注意图形位置的变化;(2由直角三角形斜边上的中线等于斜边的一半可知,连结FC、FD,可得FC=1/2AB=FD,又已知CE=DE,根据等腰三角形的三线合一可得EF垂直CD。略解:(1图(2中RtACB由图(1中RtACB沿AB翻折180º而得到。(2EF是CD的中垂线。理由略。提炼:要能体会知
13、识之间的内在联系,合理添加辅助线,化难为易。例4、已知直角梯形ABCD中,ADBC,ABBC,AB=6,AD=8,C=45º,有一点P从D向A以每秒1个单位的速度行动,有一点Q从B向C以每秒1.5个单位的速度行动。问:在运动过程中四边形PQCD能成为特殊的四边形吗?什么时候成为怎样特殊的四边形?分析:由于ADBC,四边形PQCD能否成为特殊的四边形,只需看点P、点Q在运动过程中四边形PQCD的对边或邻边能否相等,因此需分情况讨论并计算。解略(当t= 5.6秒时,四边形PQCD为平行四边形;当t=0.8秒时,四边形PQCD为等腰梯形;当t=3.2 秒时,四边形PQCD为直角梯形。提炼:
14、要注意数形结合和分类思想,同时考虑问题要全面,防止遗漏。、【小结】:1、单元知识结构(见填空,并重点从边、角、对角线理解特殊平行四边形、梯形的性质和判定。2、本课运用的数学思想方法:转化思想、类比思想、分类思想等。、【实践】1、教师自行设计作业。2、复习指导用书第9294页练习五、第9697页练习六。第17课时圆(1京华中学复习教学目标:1、知道圆、弧、弦、圆心角、圆周角等基本概念;认识圆的对称性;了解圆锥的侧面展开图是扇形。2、能用垂径定理,圆心角、弧、弦之间关系定理,圆周角定理及推论,弧长公式等进行简单的运算和推理;会通过作图的方法理解确定圆的条件。3、会用折叠、旋转、圆的对称性及分类讨论
15、的思想方法探索图形的有关性质,能将有关弦长、半径的实际计算问题转化成解直角三角形问题解决。复习过程设计一、【唤醒】1、填空基本概念:弧、弦、圆心角、圆周角确定圆的条件:对称性:垂径定理及逆定理圆基本性质:圆心角、弧、弦的关系定理:圆周角定理:同弧或等弧所对的圆心角是它所对的圆周角的推论:(1同弧或等弧所的圆周角(290°的圆周角所对弦是,与圆有关的计算公式:(1;(2;(3;(4 ;2、判断:(1圆是轴对称图形,其对称轴是任意一条直径;((2)平分弦的直径垂直于弦,并且平分弦所对的弧; (3)过任意三点可确定一个圆; (5)一条弦所对的圆心角是它所对的圆周角的 2 倍。 3、选择题:
16、 (A)4; 为( ) (A)50° 或 65° ; (B)65° ; (C)65°或 50° ; (B)6; (C)7; (D)8 ( ( ( ) ) ) ) ) (4)任何三角形只有一个外接圆,一个圆也只有一个内接三角形; ( (1)O 的直径为 10,圆心 O 到弦 AB 的中点 M 的长为 3,则弦 AB 的长是( (2)ABC 内接于O,AB=AC,A=50°,D 是O 上一点,则ADB 的度数 (D)115° (3)如图所示,A、B、C、D、E 相互外离,它们的半径都是 1,顺次连 接五个圆心,得到五边形 ABC
17、DE,则图中五个扇形(阴影部分)的面积之和 是( ) (A); 为( ) (A)3cm; (B)1.5cm; (C)6 cm; (D)4 cm (5已知ABC 是半径为 2 的圆内接三角形,若 BC=2 3 ,则A 的度数为( (A)30°; (B)60°; (C)120°; (D)60°或 120° ) (B)1.5 ; (C)2 2 ; (D)2.5 (4如果圆锥的侧面展开图的面积是 15cm , 母线长是 5cm,那么圆锥的底面半径 (6)图中的五个半圆,邻近的两个半圆相切,两只小虫同时出发,以相同的速度从 A 点到 B 点甲虫沿弧 AD
18、A1 、弧 A1 EA2 、弧 A2 FA3 、弧 A3 GB 的路线爬行,乙虫沿 弧 ACB 的路线爬行,则下列结论正确的是( (A)甲虫先到 B 点; (B)乙虫先到 B 点; (C)甲虫、乙虫同时到达 B 点; (D)无法确定。 二、 【尝试】 例 1、如图,在ABC 中, BAC 的平分线 AD 交ABC 的外接圆O 于点 D,交 BC 于点 G,若 AG=6,DG=2,求 CD 的长。 分析:连接 DC,用相似三角形解决。 解略。 (DC=4) 例2、 ABC 中,AB=AC=10,BC=12,求ABC 外接圆的半径。 分析:利用三角形外心的特殊位位置和垂径定理构造直角三角形解决。
19、解略。 ABC 外接圆的半径为 6.25 ) ( 。 提炼: 善于用数学转化的思想方法, 将不同情境下的数学问题转化为比 较熟悉的直角三角形问题解决。 例3、 1)如图,小军学完垂径定理,逆向思考得出一个结论: “弦的垂直平分 线一定经过圆心, 并且平分弦所对的两条弧” 你认为小军的猜测正确 , 吗?为什么? (2) 你能用上面的结论, 帮助考古学家用尺规作图的方法确定古圆盘 的半径吗? 分析: (1)根据圆上的点到圆心的距离相等进行说理 (2)圆心可有两条不同的直径相交确定,因此要确定圆心,只要确 定出两条不同的直径就可,由两条不同的弦,作其垂直平分线, ) 则 交点就是圆心。 解: (1)
20、圆心 O 到 A 和 B 的距离相等, 点 O 一定在 AB 中垂线上。 即 AB 的中垂线过圆心。 (2)略 提炼:能将学圆性质时的探究方法灵活运用到探索新的有关结论,并能应用。 例4、 如图: 把直角三角形 ABC 的斜边 AB 放在直线 l 上, 按顺时针方向在 l 上转动两次,使它转到A2 B2 C2 的位置,设 BC=1,AC= 3 ,则点 A 运动到点 A2 的位置时,点 A 经过的路线长是多少?点 A 经过的路线与 直线 l 所围成的面积是多少? 分析:点 A 经过的路线长就是以 B 为圆心,以 AB 为半径的圆弧和以 C2 为圆心,以 AC 为半径的圆 弧的长度。 面积就是两个
21、扇形面积与一个直角三角 形的面积和。 解:点 A 经过的路线长为 8+3 3 ; 点 A 经过的路线与直线 l 所围成的面积 6 是 25 3 + 12 2 提炼: 在理解旋转性质的基础上将问题转化为所学的有关圆的计算公式解决。 三、 【小结】1、知识结构:见上表 2、基本数学思想方法:转化的思想;分类讨论的思想;数形结合的思想等。 3、解题注意点: (1)在解决问题的过程中,注意归纳总结出解决问题的一些基本规律, 提高学习效率; (2)注意解决问题的严密性,充分考虑各种情况。 四、 【实践】教师自行设计作业;复习指导用书第 107109 页第 1、2、5、6、9、12、 21 题。 第 18
22、 课时 京华中学 圆(2) 复习教学目标: 4、 知道圆与点、圆与直线、圆与圆的不同位置关系;知道切线的概念。 5、 会用圆心到点的距离大小判断圆与点的位置情况,圆心到直线的距离大小判断圆与点直 线的位置情况;圆心到圆心的距离大小判断圆与圆的位置情况;会用圆的切线的判定定理 和性质定理及两圆相切的性质与判定进行简单的推理与计算;会作三角形的外接圆、内切 圆,会过圆上点作圆的切线。 6、 能从运动的观点与分类讨论的思想方法探索图形之间的关系和有关性质。 复习过程设计 一、 【唤醒】 1、 填空 (1)点在圆外 圆与点的位置关系: (2) 点到圆心的距离 d > r 点到圆心的距离 d r
23、(3) (1) 相离 圆与直线的位置关系 (2) 圆 (3) r (1)相离 圆与圆的位置关系: (2)相交 (3)相切 点到圆心的距离 d r 圆心到直线的距离 d > r 圆心到直线的距离 d r 圆心到直线的距离 d 2、判断: (1)若圆经过 A、B 两点,则圆心一定可能是线段 AB 的中点; ( (2)若直线与圆有公共点,则直线与圆相交; ( (3)圆的切线垂直于圆的直径; ( (4)垂直于直径的直线是圆的切线; ( (5)垂直于圆的切线的直线一定过切点; ( (6)若两圆无公共点,则这两圆外离; ( (7)直线 l 上一点 P 到圆心 O 的距离等于半径 R,则直线 l 与圆
24、 O 相切。 ( 3、选择题: (1)A、B 两点到点 O 的距离等于 4cm ,则点 A、B 在( ) (A)O 上; (B)O 内; (C)O 外; (D)无法确定。 ) ) ) ) ) ) ) (2)如图所示:已知等边ABC 的边长为 2 3 cm,下列以 A 为圆心的各圆中,半径是 3cm 的圆是( ) (A) ; (B) ; (C) ; (D) (3)点 P 到ABC 各边的距离相等,则点 P 是ABC 的( ) (A)内心; (B)1.外心 ; (C)中心 ; (D)垂心。 (4 已知ABC 的三边分别是 6、8、10,则此三角形外接圆的半径为( (A)10; (B)6; (C)4
25、; (D)5 ) (5两个同心圆,大圆的弦 AB 与小圆相交于点 C、D 两点,若 AB=6,CD=2,则两圆组成 的圆环面积是( ) (A)32 (B)16 (C)8 ; (D)无法确定 二、 【尝试】 例 1、已知 RtABC 的斜边 AB=13,AC=5,CD 是 AB 边上的高。 (1)以 C 为圆心,当 半径为多少时, 与 C 相切? AB (2) 此时C 与点 A、 C、 之间是怎样的位置关系? B、 D 分析:判断点与圆的位置关系关键是利用圆心到点的距离与半径的大小关系;判断直线 与圆的位置关系关键是利用圆心到直线的距离与半径的大小关系,而不是直线上任意一点 到圆心的距离。 解略。 (答案:R=60/13;点 A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 印章保管使用制度
- 2024至2030年中国舞厅灯行业投资前景及策略咨询研究报告
- 室外给排水施工方案
- 2024至2030年中国纯水生产线行业投资前景及策略咨询研究报告
- 学校后勤人员聘任合同
- 2024年金相试样无级调速抛光机项目可行性研究报告
- 2024年聚酰亚胺薄膜热固压敏胶带项目可行性研究报告
- 2024年玛铁件项目可行性研究报告
- 编办个人工作总结
- 2024年四角封自立袋包装机项目可行性研究报告
- 营养风险筛查与评估课件(完整版)
- 2023年江西飞行学院招聘考试真题
- 2024入团积极分子入团考试题库(含答案)
- 对外投资合作国别(地区)指南 -巴林-20240529-00467
- 2024年小学科学新教材培训心得8篇
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
- 粪污处理产业发展政策与法规
- 五十六个民族之乌孜别克族介绍
- 流体力学-刘鹤年-章节课后答案
- 售后服务方案及运维方案
- 教科版小学科学四上《3.4弹簧测力计》课件
评论
0/150
提交评论