版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、口诀: “带着问题读材料,能做一道做一道;估算比例结合用,具体排除更巧 妙!”一)带着问题读材料,能做一道做一道解析:在做资料分析(主要指文字类的) 、短文章阅读和申论时我都是先看问 题再看资料,带着第一道题读材料,能做了立即停止阅读,答题;在停止阅读处 做好标记,以便接着读,答完第一题后再带着第二题接着读;依此类推。好处有三:1针对性强,准确率高;2有时很多材料的段落根本用不上,可以节省时间;3.完全符合“应试”的思维。二)估算比例结合用,具体排除更巧妙具体到资料分析上我们举例说明: (以 06 年国考原题为例)2003 年国家财政科技拨款额达亿元,比上年增加亿元,增长,占国家财政 支出
2、的比重为。在国家财政科技拨款中,中央财政科技拨款为亿元,比上年增 长,占中央财政支出的比重为; 地方财政科技拨款为亿元, 比上年增长 10 , 占地方财政支出的比重为。分执行部门看,各类企业科技活动经费支出为亿元, 比上年增长;国有独立核算的科研院所科技活动经费支出亿元,比上年增长; 高等学校科技活动经费支出亿元,比上年增长,高等学校科技活动经费支出占 全国总科技活动经费支出的比重为。各类企业科技活动经费支出占全国总科技 活动经费支出的比重比上年提高了个百分点。1. 2003 年国家财政支出总额为 ()。A .亿元B.亿元C .亿元D .亿元22003 年中央财政支出与地方财政支出之比约为()
3、。A1:B:1C1:D:13与 2002 年相比, 2003 年科技活动经费支出绝对增长量最大的执行部门是()。A 各类企业 B 国有独立核算的科研院所 C 高等学校 D 无法得知()。4 2003 年国家财政科技拨款额约占全国总科技活动经费支出的ABCD5 根据文中划线部分内容,可以求出的选项为 ()12002 年各类企业科技活动经费支出 22003 年全国总科技活动经费支出32002 年全国总科技活动经费支出A. 1B . 1与2C . 2与3D . 1、2与3首先,不看资料看问题 1 ,划出关键词 “国家财政支出总额 ”,也就是我们在 材料中要找到的。当读完第一句话时,可以发现我们要找的
4、出现了,在第一句话 结尾处标记。一般解法为:-%,这样的方法对这道题还可以,但对数字不规整的 就显得繁琐了些。我们这样做:估算成 1000, %转换成分数,即 1/25,则题意可理解为1000是1/25,求1/1是多少显然1000X25=25000,和答案A近似,故答 案为 A.( 国考答案设置是很有技巧的,通常都可以用估算法的;省考差些,但可以 结合运用。 )记住,不要接着读,要看下一道题再接着读。再看第二题, 划出关键词 “中央财政支出 ”和“地方财政支出 ”,只要这两个有了,答案就来了。当你读完第二句话时此题可以做了。停止阅读、标记) 。先求 “中央财政支出”,一般解法为:-%,麻烦、慢
5、。我们所用的方法和原理同第一题,但技巧性更强了,估算成640,甚至600都可以,为了体现估算法在真题的资料分析 中的实用性下面我们用 600计算,%转化成多少分之一(这是比例转化法的核心和关键),怎样转化呢其实只需考虑乘以多少大概等于100即可,X0=86,和100差14,那再加两个就差不多了,所以我们把估算成1/12,则题意变为:600是 1/12,12/12是多少那么 中央财政支出”即为600X12=7200,求 地方财政支出”同 理,估算成300,%转化为1/50,则地方财政支出”为300X50=15000,所以答案 约为7200- 15000"7- 15i 2点几,所以答案为
6、 C。第三题,同样带问题读。首先要理解什么是绝对增长量”即为两年具体经费 的差值,也就是具体的钱数差;一般方法为:算出上一年具体钱数,再和今年的 做差,求出。我们还是使用上两题的原理,但稍微改变思路:以各类企业为例,题中给出各类企业科技活动经费支出为亿元,比上年增长;”先把估算成960,再把%转化为约等于1/5,则题意可以理解为:今年比去年多1/5 ”也就是说如 果去年是5份,那么今年就是 6份,即960是六份,求五分是多少(去年)但这道题求绝对增长量”实际就是求一份是多少所以我们对于这道题只需用960+6,求出一份,即可,B、C选项同理,B为400-8或9都可(估算嘛),C为160-5,还有
7、一点要注意做资料分析尽量不计算,只列式。A、B、C中A为3位数,B、C为两位数,所以最大的是 A0第四题方法同:国家财政科技拨款额”估算成1000,全国总科技活动经费”为 160X10=1600,所以答案为 1000-1600=10-16=5- 862% 所以答案为 B。第五题,考察题,1、2很简单,前面都涉及到,所以可以求出;关键是 3,因为画线部分不包括最后一句,所以不能得出,选B0 (有人用题中给出的各个部分求出2002年的具体数后相加等也可得出3,但个人认为题中没指出分执行部门看 ”只包括题中给出的几个方面,所以不可以。 )资料分析的图形和表型同样可以用估算和比例的转化法。二、速算技巧
8、 【速算技巧一:估算法】般在选项相差较大,或者在被比较数据相差较大的情况下使用。【速算技巧二:直除法】直除法”是指在比较或者计算较复杂分数时,通过 “直接相除 ”的方式得到商的首位(首一位或首两位) ,从而得出正确答案的速算方式。直除法 ”从题型上一般包括两种形式:、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大 /小数;、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。直除法 ”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的 “倒数 ”的首位来判定答案。32895/4701
9、。【例 2】 32409/4103 、32895/4701 、23955/3413 、12894/1831 中最小的数是() 。 【解析】 32409/4103 、23955/3413 、12894/1831 都比 7 大,而 32895/4701 比 7 小, 因此四个数当中最小的数是李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可 避免的。【例 3】、中最大的数是() 。【解析】 只有比 9 大,所以四个数当中最大的数是。在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。【例 4】、中最大的数是() 。【解析】本题
10、直接用 “直除法 ”很难直接看出结果,我们考虑这四个数的倒数: 利用直除法,它们的首位分别为 “4、”“4、”“4、”“3,” 所以四个倒数当中最小,因此原来四个数当中最大。【例 6】某地区去年外贸出口额各季度统计如下,请问第二季度出口额占全年的比例为多少() 第一季度第二季度第三季度第四季度全年 出口额(亿元) 457356983495384217608【解析】5698/17608 =+ =30%+,其倒数 17608/5698 = 3+,所以 5698/17608 = (1/3)-,所以选 B。【速算技巧三:截位法】所谓"截位法 ",是指"在精度允许的范围内,
11、将计算过程当中的数字截位(即只看或者只取前几位) ,从而得到精度足够的计算结果 "的速算方式。在加法或者减法中使用 "截位法 "时,直接从左边高位开始相加或者相减 (同时 注意下一位是否需要进位与借位) ,直到得到选项要求精度的答案为止。在乘法或者除法中使用 "截位法 "时,为了使所得结果尽可能精确, 需要注意截 位近似的方向:1扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;2扩大(或缩小)被除数,则需扩大(或缩小)除数。如果是求"两个乘积的和或者差(即 axb±cxd)",应该注意:3扩大(或缩小
12、)加号的一侧,则需缩小(或扩大)加号的另一侧;4扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。到底采取哪个近似方向由相近程度和截位后计算难度决定。般说来,在乘法或者除法中使用 "截位法"时,若答案需要有 N 位精度,则计算过程的数据需要有 N1 位的精度,但具体情况还得由截位时误差的大小以及 误差的抵消情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满 足上述截位方向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与 训练误差的把握,在可以使用其它方式得到答案并且截位误差可能很大时,尽量 避免使用乘法与除法的截位法。【速算技巧四:化同法】所谓&q
13、uot;化同法 ",是指"在比较两个分数大小时,将这两个分数的分子或分母化为相同或相近,从而达到简化计算 "的速算方式。一般包括三个层次:1将分子(或分母)化为完全相同,从而只需要再看分母(或分子)即可;2将分子(或分母)化为相近之后,出现 "某一个分数的分母较大而分子较小"或"某一个分数的分母较小而分子较大 "的情况,则可直接判断两个分数的大小。3将分子(或分母) 化为非常接近之后, 再利用其它速算技巧进行简单判定。事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能 达到的,所以化同法更多的是 "
14、化为相近 "而非"化为相同 "。【速算技巧五:差分法】李委明提示: “差分法 ”是在比较两个分数大小时,用 “直除法”或者“化同法 ”等 其他速算方式难以解决时可以采取的一种速算方式。适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个 分数的分子与分母分别仅仅大一点,这时候使用 “直除法 ”、“化同法 ”经常很难比较 出大小关系,而使用 “差分法 ”却可以很好地解决这样的问题。基础定义:在满足“适用形式 ”的两个分数中,我们定义分子与分母都比较大的分数叫 分数”,分子与分母都比较小的分数叫 “小分数 ”,而这两个分数的分子、分母分别 做差得到的新的
15、分数我们定义为 “差分数”。例如:324/与313/比较大小,其中 324/就是“大分数”, 313/就是“小分数”,而 324-313/就是“差分数”。差分法 ”使用基本准则: 差分数”代替“大分数”与“小分数 ”作比较:1若差分数比小分数大,则大分数比小分数大;2若差分数比小分数小,则大分数比小分数小;3若差分数与小分数相等,则大分数与小分数相等。比如上文中就是 “11代/ 替 324/与 313/作比较 ”, 除法”或者“化同法”简单得到),所以 324/>313/。特别注意:因为11/> 313/ (可以通过直得出来的大小关系是精确的关1 “差分法 ”本身是一种 “精算法
16、”而非 “估算法 ”, 系而非粗略的关系;2“差分法”与“化同法”经常联系在一起使用,化同法紧接差分法 ”与“差分法紧接化同法 ”是资料分析速算当中经常遇到的两种情形。3“差分法”得到“差分数”与“小分数”做比较的时候, 还经常需要用到 “直除法 ”。4如果两个分数相隔非常近,我们甚至需要反复运用两次差分法 ”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。【例 1】比较 7/4 和 9/5 的大小【解析】运用大分数小分数差分法”来比较这两个分数的大小关系:(差分数 )9/57/4根据:差分数 因此:大分数97/51=2/1=2/1 >7/4= 小分数=9/5 >7
17、/4= 小分数李委明提示:使用 “差分法 ”的时候,牢记将 “差分数”写在“大分数”的一侧,因为它代替的是 分数”做比较。大分数 ”,然后再跟 “小例 2】比较 101 和 103 的大小解析】运用 “差分法”来比较这两个分数的大小关系:小分数大分数101103 103101=2(差分数)根据:差分数=2=30/200 < 101=小分数(此处运用了 化同法”)因此:大分数=103 < 101=小分数注释 本题比较差分数和小分数大小时,还可采用直除法,读者不妨自己试试。 李委明提示( “差分法 ”原理):以例 2为例,我们来阐述一下 “差分法 ”到底是怎样一种原理,先看下图:上图显
18、示了一个简单的过程:将n号溶液倒入I号溶液当中,变成m号溶液。其中I号溶液的浓度为小分数” m号溶液的浓度为 大分数”而n号溶液的浓度为 差分数”显然,要比较I号溶液与m号溶液的浓度哪个大,只需要知道 这个倒入的过程是 稀释”还是 变浓”T,所以只需要比较n号溶液与I号溶液的浓度哪个大即可。【例 3】比较和的大小解析】运用 “差分法 ”来比较这两个分数的大小关系:根据:很明显,差分数 =V 2< =小分数 因此:大分数= < =小分数 注释本题比较差分数和小分数大小时,还可以采用【例 4】下表显示了三个省份的省会城市(分别为 据回答:、 C 两城 2005 年 GDP 哪个更高直除
19、法 ”(本质上与插一个 “2是”等价的)。A、B、C 城) 2006 年 GDP 及其增长情况,请根据表中所提供的数、 C 两城所在的省份 2006 年 GDP 量哪个更高GDP (亿元) GDP 增长率占全省的比例A 城 %B 城 %C 城 %【解析】一、 B、 C 两城 2005 年的 GDP 分别为: 分法”:1%、1 %;观察特征(分子与分母都相差一点点)我们使用“差1%1%运用直除法,很明显:差分数=% > 1000 > 1 + % =小分数,故大分数>小分数所以 B、C 两城 2005 年 GDP 量 C 城更高。二、A、C两城所在的省份2006年GDP量分别为:
20、%、% ;同样我们使用 差分法”进行比较:%=% 2%=2126/20%上述过程我们运用了两次 差分法”,很明显:2126/20% > %,所以% > % ; 因此2006年A城所在的省份 GDP量更高。【例5】比较X和X勺大小【解析】与很相近,与也很相近,因此使用估算法或者截位法进行比较的时候,误差可能会比较大,因此我们可以考虑先变形,再使用 差分法”即要比较 押X的大小,我们首先比较和的大小关系:2根据:差分数=2 > 2 > =小分数因此:大分数 = > =小分数 变型: X>X李委明提示(乘法型 “差分法 ”):要比较aXb与a'x的大小,如
21、果a与a,相差很小,并且b与b,相差也很小,这时候可以将乘法 较转化为除法ab'与a'b勺比较,这时候便可以运用 差分法”来解决我们类似的乘法型问题。我们在 遵循以下原则可以保证不等号方向的不变:axb与ax的比化除为乘 ”的时候,化除为乘 ”原则:相乘即交叉。【速算技巧六:插值法】"插值法 "是指在计算数值或者比较数大小的时候,运用一个中间值进行"参照比较"的速算方式,一般情况下包括两种基本形式:1在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小 关系
22、。比如说A与B的比较,如果可以找到一个数 C ,并且容易得到A>C,而B<C , 即可以判定 A>B。2 .在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以容易的找到 A与B之间的一个数C,比如说AvCvB,并且我们可以判断f>C,贝y我们知道f = B(另外一种情况类比可得)。【速算技巧七:凑整法】"凑整法 "是指在计算过程当中,将中间结果凑成一个 "整数"(整百、整千等其它方便计算形式的数) ,从而简化计算的速算方式。 "凑整法"包括加 /减法的凑整,也包括乘 /除法的凑整。在资料分析
23、的计算当中, 真正意义上的完全凑成 "整数"基本上是不可能的, 但 由于资料分析不要求绝对的精度,所以凑成与 "整数"相近的数是资料分析 "凑整法"所真正包括的主要内容。【速算技巧八:放缩法】"放缩法 "是指在数字的比较计算当中, 如果精度要求并不高, 我们可以将中间 结果进行大胆的 "放"(扩大)或者 "缩"(缩小),从而迅速得到待比较数字大小关系的速算方式。若 A>B>0 ,且 C>D>0 ,则有:1) A+C>B+D2) A-D>B-
24、C3) A)C>BX D4) A/D>B/C这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做 题当中经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考场之上容易漏掉的数学关系,其本质可以用"放缩法 "来解释。【速算技巧九:增长率相关速算法】(一)两年混合增长率公式:如果第二期与第三期增长率分别为 r1与r2,那么第三期相对于第一期的增长率为:r1 + r2 + r1 Xr2(二)增长率化除为乘近似公式:如果第二期的值为 A,增长率为r,则第一期的值A:A' = A/(1 + r)AX( 1-r)实际上左式略大于右式
25、,r越小,则误差越小,误差量级为 r2)(三)平均增长率近似公式:如果N年间的增长率分别为r1、r2、r3rn ,则平均增长率:r r甘r2 + r3 +rn/n四) 求平均增长率 时特别注意问题的表述方式,例如:1. “从 2004 年到 2007 年的平均增长率 ”一般表示不包括 2004 年的增长率;2. “2004 2005、2006、2007年的平均增长率”一般表示包括 200 4年的增长率。分子分母同时扩大 /缩小型分数 ”变化趋势判定:B中若A与B同时扩大,则若 A增长率大,则A/B扩大若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则若 A减少得快,则A/B缩小若B减少得
26、快,则 A/B 扩大。(A + B)中若A与B同时扩大,则若 A增长率大,则A/ (A + B)扩大若B增长率大,则A/ (A + B)缩小;A/ (A + B)中若A与B同时缩小,则若A减少得快,则A/ (A + B)缩小若B减少得快,则A (A + B)扩大。五) 多部分平均增长率 :如果量A与量B构成总量“A B”,量A增长率为a,量B增长率为b,量“A+ B”的增长率为r,则A/B二r-b/a-r,般用十字交叉法”来简单计算:A: a r-b AB: b a-r B注意几点问题:一定是介于a、b之间的,十字交叉”相减的时候,一个r在前,另一个r在 后;2.算出来的 A/B=r-b/a-
27、r 是未增长之前的比例,如果要计算增长之后的比例,应该在这个比例上再乘以各自的增长率,即A /B' (=-b) X (1 + a) / (a-r) x (1 b)。六) 等速率增长结论 :如果某一个量按照一个固定的速率增长,那么其增长量将越来越大,并且这个量的数值成 “等比数列 ”,中间一项的平方等于两边两项的乘积。例 1】2005 年某市房价上涨 % ,2006 年房价上涨了 % ,则 2006 年的房价比 2004 年上涨了()。%【解析】% + % + %<%«% + % + %<6%«24%,选择 B。【例 2】 2007 年第一季度,某市汽车销
28、量为 10000 台,第二季度比第一季度增长了 12% ,第三季度比第二季度增长 了 17% ,则第三季度汽车的销售量为() 。【解析】12% + 17% + 12%<17%«12% + 17% + 12%< 1/6 = 31%,10000X (1 + 31%) = 13100,选择 C。【例 3】设 2005 年某市经济增长率为 6%, 2006 年经济增长率为 10%。则 2005、2006 年,该市的平均经济增长率 为多少()【解析】r -r1+ r2/2=6% + 10%/2=8%,选择 B。【例 4】假设 A 国经济增长率维持在的水平上,要想GDP 明年达到 2
29、00 亿美元的水平,则今年至少需要达到约多少亿美元()【解析】200/1 + %«200X (%)=,所以选Co注释本题速算误差量级在 r2=%)26/10000 , 200亿的6/10000大约为亿元。例 5】如果某国外汇储备先增长10%,后减少 10%,请问最后是增长了还是减少了()A.增长了 B.减少了 C.不变D.不确定【解析】ax ( 1 + 10%) X (1 10%)=,所以选 B。 李委明提示:例 5 中虽然增加和减少了一个相同的比率,但最后结果却是减少了, 我们一般把这种现象总结叫做 “同增同减, 最后降低”。即使我们把增减调换一个顺序,最后结果仍然是下降了。【速算
30、技巧十:综合速算法】李委明提示:“综合速算法 ”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提 高计算速度的有效手段。1 平方数速算 : 牢记常用平方数,特别是1130 以内数的平方,可以很好地提高计算速度:121 、144 、169 、196 、225 、256 、 289 、 324 、 361 、 400441 、484、529、576、2尾数法速算 :625 、676 、 729 、 784 、 841 、 900因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。 因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法, 3错位相加 /减:但在地方考题的资料分析当中,尾数法仍然可以有效地简化计算。AX 9型速算技巧:AX
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省龙东地区2024-2025学年高一上学期阶段测试(二)(期中) 语文 含解析
- 2024室内智能物流机器人
- 常德2024年05版小学六年级下册英语第五单元综合卷
- 郑州-PEP-2024年小学六年级上册英语第二单元寒假试卷
- 珠宝生产企业的账务处理分录-记账实操
- 强化企业安全生产-责任落实十项
- 概括内容要点理解词句含义-2025年高考语文一轮复习知识清单(解析版)
- 1.1 反比例函数 同步练习
- 2024年初级经济师之初级金融专业模拟考试试卷B卷(含答案)
- 平面图形的镶嵌评课稿(10篇)
- 同底数幂的乘法练习
- 医院检验科实验室生物安全程序文件SOP
- 岗位竞聘课件(完美版)
- 中国新闻事业发展史 第十四讲 新闻事业的曲折发展
- JJG 270-2008血压计和血压表
- 中职数学《平面的基本性质》课件
- 尘肺病的知识讲座
- 大学生生涯规划与职业发展智慧树知到期末考试答案2024年
- 消毒供应室护理查房
- 年产十二万吨天然橙汁食品工厂设计样本
- 消防安全与建筑设计的结合
评论
0/150
提交评论