




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次根式导学案第一课时二次根式复习(1)已知 x2 = a,那么 a 是 x的; x 是 a的记为, a 一定是 。(2) 4的算术平方根为2,用式子表示为44 ;正数a的算术平方根为,0的算术平方根为;式子4a>0(a>0)的意义是。自主学习(1),16的平方根是;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式h =5t2。如果用含h的式子表示t,则t=;(3)圆的面积为S,则圆的半径是 ; 正方形的面积为b-3,则边长为。思考:,16,h h , s , .b-3等式子的实际意义.说一说他们的共同特征.定义:一般地我们把形
2、如 扁(a启0 )叫做二次根式,a叫做。/。1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?<3-V4 G 型g 启 0) Px2 +1''''3-'2、 当a为正数时.a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。所以,在二次根式a中,字母a必须满足,a才有意义。3、 根据算术平方根意义计算:(1)(百)2(応)2(3)(J05)2(4)(書)2根据计算结果,你能得出结论:(需)2 = ,其中a色0,4、由公式(-a)2二a(a0),我们可以得到公式a = (、a)2 ,利用此公式可以把任意一个非负数写成一 个数的平
3、方的形式。如(5)2=5;也可以把一个非负数写成一个数的平方形式,女口5=( .5)2.练习:(1)把下列非负数写成一个数的平方的形式:60.35(2)在实数范围内因式分解2 2X 一74a -11【例1】下列式子,哪些是二次根式,哪些不是二次根式: 1 一 貶、V3、丄、你(x>o)、品、42、x-_2、x y (x>0, y?>0).x + y1【例2】当x是多少时,2x 3 + 一 在实数范围内有意义? x+1【例3】已知y=.牙龙+. 口+5,求-的值.y若尹+、口=0,求 a2012+b2012 的值.练习:1、x取何值时,下列各二次根式有意义?、3x -42、(1
4、)若 片3/?有意义,则a的值为.A.正数B.负数(2)若、 在实数范围内有意义,则x为()。C.非负数D.非正数1 一 2x3、(1)在式子 一中,x的取值范围是.1 + x(2)已知 Jx2 -4 + J2x + y = 0,贝U x - y =.(一)填空题:馆丫1、 J 当x=时,代数式.4x 5有最小值,其最小值是 。 在实数范围内因式分解:(1) x2 -9 =x2 -( ) 2= (x+_ ) (x-)(2) x2 - 3 =x2 -( ) 2= (x+_ ) (x-)(二)选择题:1、一个数的算术平方根是a,比这个数大3的数为()A > a 3 B、. a -3 C、a
5、3 D > a232、二次根式、a -1中,字母a的取值范围是()A、 avl B 、a< 1 C、a> 1 D、a> 13、已知3 =0则x的值为() A x>-3 B、x<-3 C、x=-3 D、x的值不能确定4、 下列计算中,不正确的是()。A、3= (V3)2 B、0.5= (V05)2 C、".6=0.6 d、(5刀)2=35 =、若 J2x_1 + y _1 =0,那么 x =第二课时 二次根式的性质复习(1)什么是二次根式,它有哪些性质?(2)二次根式J J有意义,则x x-5(3)在实数范围内因式分解:x2 - 6=x2 -( )2
6、=(x+_)(x-)自主学习【探究一】1根据算术平方根的意义填空:4)2=;( ,2)2=; G. 9)2=; C3)2=;q 3 宀;y 2)2=;(、0)=根据以上结果,你能发现什么规律? 【归纳】 二次根式的性质:| (梟)2= a (a0)【例1】计算: J 3 ) 2(2)( 3角)23(, 5 ) 2(丄)2V2V 62【例2】计算:(1)('.门)2(x>0)(2)(.a2 )2(3)(a22a 1) 2(. 4x2 -12x 9 ) 2【例3】在实数范围内分解下列因式4(2) x-42 2x -32(1) x-3【探究】1、计算: .42 = 0.22 二、202
7、 二15观察其结果与根号内幕底数的关系,归纳得到:当 a 0时八a2二2、计算:.(-4)2 : <(-0.2)2; 2、(-20)2 二 观察其结果与根号内幕底数的关系,归纳得到:当a:0时厂a2二3、 计算:02 二 当 a = 0时,'一 a 二4、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:a a >0Qa = a = «00-a a c0-5、化简下列各式:(1)、(阿=(2)、J(q5)2 = (3)、$(-6)2= (4)、7207=( ac0)巩固练习1 计算(1)(书)2(2)-(73 )2(3)( 2 46
8、)2(4)(-3(| ) 2(5) (23+372)(2 733/2)2 把下列非负数写成一个数的平方的形式:153.4丄x (x>0).63 在实数范围内分解下列因式: x2-2(2) x4-9 3x2-54、化简下列各式(1) .(a匚3)2 (a 一3)(2 )_23 2 (xv-1.5)达标测试:1、 填空:(1)、 J(2x_1)2 -(J2x_3)2 (x 启 2)=.(2 )、J(兀4)2 =(3 ) a、b、c为三角形的三条边,则 讥a+b-c)2 +|b-a-c =.2、已知 2vxv3,化简:£(x-2)2 +|x-3二次根式的乘除法第一课时二次根式的乘法理
9、解.a b =、ab (a>0, b> 0) , ab a 、. b (a>0, b>0 ),并利用它们进行计算和化简复习 (1) 茜 x 両=, 59=;44 x V9_V9(2) 716 x V25 =, Jl6x25=_;716 x V25_Jl6x25(3) x/100X 736=_, J100x36 =_.100 x V36_/|00x36 般地,对二次根式的乘法规定为Va 証=>/ab . (a0, 反过来:| Jab fa (a0, b0)例1、计算(1) .5 x J (2) 1 x , 9(3) 3 飞 x 2、一 10 (4) 、5a A例2、
10、化简(1)、9 16(2)、16 81 (3). 81 100(4)9x2y2(5). 54巩固练习(1)计算:、,16 x ,85 5 x 2 .15 12a3 . ;ay2(2)化简:.20;24;.54;,12a2b2(3)判断下列各式是否正确,不正确的请予以改正:(4) (-9) f W 乓4;2 x . 25 =4x ;2 x ,25 =< ;2 x、丟=4、12=8 一3随堂训练1、选择题(1)等式- X 1 X -1八X2 -1成立的条件是(D. x1 或 x <-1) A . X1 B . x-1 C . -1 < x < 1(2)下列各等式成立的是()
11、.A. 4 5 x 2 5 =8 5 B .5 3 x 4 . 2 =20 5 C.4 一 3 x 3 一 2 =7 5 D.5.3 x4 . 2 =20 . 6(3)二次根式.(二2)26的计算结果是() A.26 B . -2 6 C . 6 D . 122、化简(1) v 360 ;3、计算:(1) 1830 ;第二课时二次根式的除法复习1、写出二次根式的乘法法则和积的算术平方根的性质2、计算:(1)3、8 X( -4 6 )(2) 12ab “6ab33、填空:(1)=; 规律:; 9(2)尿=.36=,7般地,对二次根式的除法规定:【例1】计算:16,36(3)【例2】化简:巩固练习
12、1、计算:(1)用V3(2)(3)(4)拓展延伸阅读下列运算过程: 石 翻 22452/53 33 一 3 '5.5 5数学上将这种把分母的根号去掉的过程称作“分母有理化 利用上述方法化简:(1)0(3 )1,12帀=2,51、选择题(1)计算1(2)化简3,2.272、计算:2的结果是测试:2; J.12的结果是)2.3,48(3)i6C .2 D .27用两种方法计算:(D詈4 63第三课时最简二次根式复习违V27【例1】判断下列二次根式,哪些是最简二次根式?为什么?8 ;(2) . 1 ; (3)、2.5 ;、厂y ;.a2 b2 ; (6) a3(1)、96x4 =(4“2【例
13、2】、化简:(1)3 12, 8x2y3820例3、计算:例4、比较下列数的大小(1) 2.8与.2 3¥4(2 ) - 7 6与- 6 7拓展延伸观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:1 二 1 ( .2 -1)2 2 1,.2 1 _ (、.2 1)( .2 _1) _ 2_1 _ ' _,11 x (J3 - V2)4 - v 232.3 .2 .3 、2)(.3 2厂亠,同理可得:1= 2一 .3,2 J3从计算结果中找出规律,并利用这一规律计算11 1 (-1+1) ( 021)的值.21.3.22009“ 2008(五)达标测试:1、
14、选择题(1)如果、% (y>0)是二次根式,化为最简二次根式是().B .齐(y>0) C .旦(y>0)yd .都不对(2)化简二次根式a: -a 22的结果是V a2A、f-a2 B 、- : a -2 C 、a -2 D 、- - a -22、填空:1丄的值等于x(1)化简 J 4 +x2y2 =. (x>0(2)已知 x = ,则 x -U5 2提高1、计算:Vab5" (-3 Ja'b)十3炉 (a>0, b>0)b2'a2、若x、y为实数,且沪丄-,求x y . x-y的值 x+23、观察下列各式,通过分母有理化,把不是
15、最简二次根式的化成最简二次根式:i = 仆(721) 近/一匹山,、2 1 ( ,2 1)( . 2 -1 2-1 ,1=仆(73V2)爲-罷=扭迈3 ,2 (,.3 .2)( .3 一 迈)一 3-2'同理可得:Q(U_ =盲-、3,从计算结果中找出规律,并利用这一规律计算11 1 1(-+ -1 -+ -1 -+)('- 2002 +1)的值.、213.24. 3. 2002 一 2001二次根式的加减第一课时二次根式的加减复习计算.(1) 2x 3x;(2) 2x2 -3x2 5x2;(3) x 2x 3y ;(4) 3a2 - 2a2 a2探索新知学生活动:计算下列各式
16、.(1) 2 2+3,2 =(2) 2 ,8-3 .8+5 ,8 =(3) .7+2、.7+3 ,尸=(4) .3-2 .3+.2 =所以,二次根式加减时,可以先将二次根式化成最简二次根式,?再将同类二次根式进行合并例 1 .计算 (1) .8+ .18(2)、莎+、莎例 2.计算(1) 3 玩-9、1 +3 .12( 2 ) (、48 +.20 ) + ( . 12 -、5 )归纳:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.巩固练习(.48 一 20)( 12 - 一 5)课堂检测1 以下二次根式:.12 :.2 :2 :.27中,与.3是同类二次根式的是().A.和B .和 C .和D .和2 .下列各式: 3 3 +3=6 3 ;7 =1 ;、. 2 +、. 6 = J8 =2 2 ; 24 =2 2 ,其中错误的有()A . 3个 B . 2个 C . 1个 D . 0个3.在下列各组根式中,是同类二次根式的是()(A)3和届(B)73和£4. 下列各式的计算中,成立的是(A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南沙区编外管理办法
- 吉祥物租借管理办法
- 托管班午休管理办法
- 定位基准站管理办法
- 林场巡护员管理办法
- 村级水利员管理办法
- 池州小额库管理办法
- 泰顺市民宿管理办法
- 巷道楼道长管理办法
- 技术管理部管理办法
- 企业专利管理办法合集
- 非婚生子女抚养权协议书
- 新能源汽车动力系统故障诊断与维护技术创新研究
- 2025村后备干部考试题库(含答案)
- 《电工技能与实训》校本教材
- 安全生产考核巡查办法全文
- 2015热力公司锅炉水冷壁爆管事故应急演练方案
- 北师大版三年级数学下册《第6单元认识分数课时1》课堂教学课件PPT小学公开课
- 原始反射以及肌张力判定
- 99S203 消防水泵接合器安装图集
- “问题链”教学相关的国内外研究现状与发展趋势
评论
0/150
提交评论