版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上探究中点四边形形状教案教学目标:.知识与技能: (1)了解中点四边形的概念; (2)利用三角形中位线定理证明中点四边形是平行四边形,理解特殊的平行四边形的中点四边形的特征; (3)理解中点四边形的形状与原四边形的对角线的关系。 . 过程与方法: (1)经历观察、猜想、证明中点四边形是平行四边形的过程熟练运用三角形中位线定理; (2)经历由一般到特殊的思维进程,发现并证明特殊的平行四边形的中点四边形的特征;.情感态度与价值观: (1)通过数学活动培养学生观察、猜想、证明的探索精神; (2
2、)通过小组讨论活动,培养学生合作的意识。 教学重点:、任意四边形的中点四边形形状的判定和证明;、特殊平行四边形的中点四边形形状的判定和证明。教学难点:影响中点四边形形状的主要因素的分析和概括。 教学过程:一、复习旧知,情境引入 、回顾三角形中位线性质定理。、问题:出示问题:一块白铁皮零料形状如图,工人师傅要从中裁出一块平行四边形白铁皮,并使四个顶点分别落在原白铁皮的四条边上,可以如何裁?(学生思考、讨论、分析,想出解决办法)师:你能证明吗?生:已知:如图,点E、F、G、H分别是四边形ABCD各边中点。求证:四边形EFGH为平行四边形。(学生可连接AC,也可连接AC、BD)二
3、、探索活动、中点四边形的定义:顺次连接四边形各边中点所得的四边形叫做中点四边形。、结合引例得出结论:任意一个四边形的中点四边形,都为平行四边形。问题2:观察这个图形,平行四边形EFGH各边与什么有关?各个内角又与什么有关?在问题2的基础上,完成下列三个探究。 探究1:四边形对角线满足什么条件时,它的中点四边形是矩形?探究2:四边形对角线满足什么条件时,它的中点四边形是菱形形?探究3:四边形对角线满足什么条件时,它的中点四边形是正方形形?学生四人小组合作探究并得出结论: (1)中点四边形的形状与原四边形的
4、 有密切关系;(2)只要原四边形的两条对角线 ,就能使中点四边形是菱形;(3)只要原四边形的两条对角线 ,就能使中点四边形是矩形;()要使中点四边形是正方形,原四边形要符合的条件是
5、 。 三、学以致用、巩固提升1.理一理平行四边形的中点四边形是矩形的中点四边形是菱形的中点四边形是正方形的中点四边形是2.请你设计一个中点四边形为正方形,但原四边形又不是正方形的四边形,并说出方法。例:如下图1 图1 图2 2、如图2:点E、F、G、H分别是线段AB、BC、CD、AD的中点,则四边形EFGH是什么图形?并说明理由。四、小结:、这节课你有什么收获
6、?、你还有什么问题与想法需要与大家交流? 五、课后作业如果原白铁皮的面积为100,要求裁出的平行四边形面积等于50,能办到吗?请说明理由. 6、 当堂检测1、顺次连接对角线相等的四边形的各边中点,所得图形一定是()A 矩形 B 直角梯形 C菱形 D正方形2、顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()平行四边形菱形等腰梯形对角线互相垂直的四边形 A. B. C. D.3、在四边形ABCD中,AB=AD,CB=CD,点M、N、P、Q分别是AB、BC、CD、DA的中点求证:四边形MNPQ是矩形中点四边形教学设计一、教学目标分析 1知识与技能:
7、60;利用三角形中位线定理判断中点四边形的形状;感受中点四边形的形状取决于原四边形的两条对角线的位置与数量关系;通过图形变换使学生掌握简单的添加辅助线的方法。2.过程与方法: (1)培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;(2)通过图形间既相互变化,又相互联系的内在规律的探究,进一步加深对“一般与特殊”关系的认识。 3.情感态度与价值观 (1)在探究过程中培养学生的参与、合作意识,激发学生探索数学的兴趣,体验数学知识获得的过程。 (2)体会中点四边形的图形美,感受数学变化规律的奇妙。二、教学重点和难点 重点:中点四边
8、形性质的探索。 难点:对确定中点四边形形状的主要因素的探究。三、教学过程互动环节教学内容 学生活动 创 设 情 境 激发兴趣
9、0; 自主探索 合作交流
10、160; 自主探索 合作交流 自主探索 合作交流
11、0; 1. 借助多媒体技术,展示两个任意四边形,顺次连接各边中点得一个新的四边形,再依次连接新四边形的各边中点,又得到一个新的四边形,不断继续下去,分别得到两组不同的四边形。 2.这两幅图片漂亮吗?你能说说它的漂亮之处吗? 1.利用模板演示提出活动一:如何从一张任意四边形卡纸里裁出一个平行四边形,并使四个顶点分别落在原四边形的四条边上? 同学们以四人小组为单位展开探究。
12、 教师利用卡纸折叠构造出学生活动得出的裁剪方法。 2.活动二:请学生验证以上发现已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形. 引导学生观察这个特殊的平行四边形的产生过程,引出课题中点四边形。 3.归纳小结不同证明方法的共同之处。从而引出活动三:观察图片你有什么发现?四人小组合作探究。(中点四边形的形状与原四边形对角线的关系) 安排几何画板动画演
13、示出任意四边形的中点四边形的变化情况,并观察在原四边形变化过程中,其中点四边形的变化。 4.活动四:画一画、证一证矩形 菱形 的中点四边形是正方形
14、 (四人小组合作交流) 请学生验证以下发现:(1)菱形的中点四边形是矩形。(2)对角线互相垂直的四边形的中点四边形是矩形。 观察以上两个命题的想同处和不同之处,并对命题进行整理。 在以上总结的基础上请同学们观察以下三个明天的区别与联系,并整理:(1)矩形的中点四边形是菱形。(2)等腰梯形的中点四边形是菱形。(3)
15、对角线相等的四边形的中点四边形是菱形。 请小组代表对于中点四边形是正方形的两条发现给予整理并证明:(1)正方形的中点四边形是正方形。(2)对角线垂直且相等的四边形的中点四边形是正方形。 学生欣赏图片的变化过程,寻找熟悉的几何图形,去发现变化的规律。 学生认真观察、畅所欲言表达自己的发现。
16、; 教师提供充分的时间,让学生以小组合作交流的形式,通过动手画图、观察并得到自己的发现。 教师深入到各小组,倾听学生们的讨论,鼓励学生大胆猜想,畅所欲言,对其中合理的回答给予肯定,对有困难的组要及时进行指导。 选出小组代表对本组的发现、以及论证进行展示。 学生总结出所得的结论: 顺次连接任意四边形的四边中点得到一个平行四边形。 各活动小组的代表口述证明过程,并展现不同的证明方法。 方法一:连接一条对角线,根据判定定理:一组对边平行且相等的四边形是平行四
17、边形。 方法二:连接两条对角线;根据判定定理:两组对边分别相等(平行)的四边形是平行四边形。 学生通过观察图形归纳总结出:1、中点四边形定义:顺次连接任意四边形各边中点所形成的四边形是中点四边形。2、任意四边形的中点四边形是平行四边形。 学生独立思考回答问题。(都连接了对角线) 学生以小组为单位进行思考、讨论、尝试,教师深入到小组活动中去,学生在小组活动中进行交流归纳,然后派代表上台交流自己组的发现:(1)中点四边形的一组邻边分别平行且等于
18、原四边形的对应对角线的一半。(2)中点四边形的一个内角等于原四边形对角线的夹角。学生观察后归纳得出: (1)任意四边形的中点四边形始终都是平行四边形。 (2)任意四边形的中点四边形也可以是特殊的平行四边形(矩形、菱形、正方形)。 学生以小组合作的形式动手画图并观察证明。小组代表对本组发现进行展示。(将各组不同的发现,对应的写在黑板上)矩形:(1)菱形的中点四边形是矩形。(2)对角线互相垂直的四边形的中点四边形是矩形。菱形:(1)矩形的中点四边形是菱形。(2)等腰梯形的中点四边形是菱形。(3)对
19、角线相等的四边形的中点四边形是菱形。正方形:(1)正方形的中点四边形是正方形。(2)对角线垂直且相等的四边形的中点四边形是正方形。 证明成功的小组派代表上台展示自己组的证明过程,并发现不同证明方法。学生以掌声加以鼓励和祝贺。对比观察后学生发现:(1)相同处:两个命题的结论相同。(2)不同处:两个命题的题设不同,但题设具有共同的特征为对角线互相垂直的四边形。 (3)可以将以上两个命题整理为:对角线互相垂直的四边形的中点四边形是矩形。 类比上两个命题的整理方式容易得出:前两个命题可以看作第三个明天的特殊情况,所以只需要证明第三个
20、命题即可。 小组代表展示证明过程及方法。从而的出结论:对角线相等的四边形的中点四边形是菱形。 小组代表口述归纳过程并展示证明方法和过程。从而得出结论:对角线互相垂直且相等的四边形的中点四边形是正方形。学生用掌声予以鼓励和祝贺。 并进一步总结出中点四边形的形状与原四边形的对角线密切相关;当对角线不满足以上特殊情况时中点四边形为平行四边形。 分 享 收 获 知 识 梳 理
21、60; 1、结合图形你能得出什么结论并用一句话总结:ACBD AC=BD 2、本章我们还学过哪些四边形?它们的中点四边形又是什么呢? 3、理一理:在学生回答的基础上进行整理,借助中点四边形帮助学生构建完整的知识体系。 学生独立思考回答问题。 对角线互相垂直的四边形的中点四边形是矩形。
22、0; 对角线相等的四边形的中点四边形是菱形。 对角线互相垂直且相等的四边形的中点四边形是正方形。 学生独立思考口答问题。 回顾引课 中考链接 如图,四边形ABCD中,ACBD,四边形A1B1C1D1是四边形ABCD的中点四边形,如此继续下去得到四边形AnBnCnDn。你能得到什么结论? 拓展延伸:(1)我们还可以计算什么?要想计算面积和周长,还需要添加什么条件?(2)还可以添加什么条件,又能
23、得到怎样的结论呢? 学生以小组为单位进行讨论、思考,然后小组代表汇报结果:(1)四边形A1B1C1D1是矩形。(2)四边形A2B2C2D2是菱形。(3)当n是奇数时,四边形AnBnCnDn是矩形;当n是偶数时,四边形AnBnCnDn是菱形。 学生独立思考在条件不变的情况下还能得到的结论,积极阐述自己的观点。 学生课后探究完成。 布置作业 巩固提 高 布置作业A组: 1.在中考链接中选择一个你认为正确的结论证明。2.三角形三边中点连接所形成的三角形的面积为原三角形面积的四分之一,四边形的中点四边形的面积为原四边形面积的对少呢?查阅有关资料尝试证明。 B组: 在中考链接中选择一个你认为正确的结论证明。 学生课后完成。四 板书设计 &
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗场所安防系统升级改造合同
- 2024年度环保设备安装工人劳务合同
- 2024年工程设计修改合同
- 2024年度加工合同加工工作内容及要求
- 2024国际快递服务加盟合同
- 2024年度房屋拆迁补偿合同拆迁范围与补偿标准
- 2024年乙方为甲方提供某输电线路工程的架设服务合同
- 美术破土课件教学课件
- 2024年广告宣传费用协议
- 20245G网络建设融资租赁合同
- 客服话术大全-
- 干果加工项目建议书范文
- 人教版初中语文教材分析(课堂PPT)
- 护理核心制度督查表20179
- 红色古色绿色文化教育活动策划方案
- 《正交分解法》导学案
- 建筑材料知识点汇总
- 小学五年级上学期家长会课件.ppt
- 平面构成作品欣赏
- 英语管道专业术语
- 社会工作毕业论文(优秀范文8篇)
评论
0/150
提交评论