某双层玻璃幕墙建筑自然通风的数值模拟研究_第1页
某双层玻璃幕墙建筑自然通风的数值模拟研究_第2页
某双层玻璃幕墙建筑自然通风的数值模拟研究_第3页
某双层玻璃幕墙建筑自然通风的数值模拟研究_第4页
某双层玻璃幕墙建筑自然通风的数值模拟研究_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    某双层玻璃幕墙建筑自然通风的数值模拟研究            作者:黄艳 刘东 杨建坤 时间:2007-11-24 15:06:00                     黄艳 刘东 杨建坤 张恩泽摘要: 根据双层玻璃幕墙建筑的

2、特殊热环境,提出过渡季节采用自然通风的方式,确定了建筑围护结构的开口方式和开口大小,使各楼层的空气温度都在热舒适范围内;应用CFD数值模拟方法对各楼层房间的三维温度场,速度场进行了模拟,研究结果表明,利用自然通风能够有效地改善室内热环境,较好地满足人体热舒适的要求。 关键词: 自然通风 数值模拟 中庭 1.引言空调的应用为人们创造了舒适的室内环境,但也带来了一些问题;首先,空调建筑的密闭性较好,当新风量不足时,室内空气品质(IAQ)恶化会导致病态建筑综合症(SBA);其次,大量的空调器加剧了城市热岛效应,造成室外空气热环境恶化;再次,空调器的普及使建筑能耗有较大的增长趋势。因此随着可

3、持续发展战略的提出,同时发展生态建筑也是大势所趋,自然通风这项古老的技术重新得到了重视。合理利用自然通风能取代或部分取代传统制冷空调系统,不仅能不消耗不可再生能源实现有效被动式制冷,改善室内热环境;而且能提供新鲜、清洁的自然空气,改善室内空气品质,有利于人的身体健康,满足人们心理上亲近自然,回归自然的需求。采用双层玻璃幕墙可以进行有效的自然通风。双层玻璃幕墙又称动态幕墙,两层玻璃之间的距离为20mm500mm,利用“烟囱、热流道”效应,气流在两层玻璃幕墙中间由下向上循环,带走外面一层玻璃幕墙太阳辐射的能量,达到隔热、保温、节能、环保的功效。按照不同的通风原理双层玻璃幕墙可分为:整体式、廊道式、

4、通道式和箱体式。双层玻璃幕墙具有多项功能:减少风及恶劣气候的影响、提高隔音能力、充分利用太阳能、使用自然通风使空调使用率降至最低。本文主要研究其自然通风的功能及效果。2.研究对象及技术路线2.1 研究对象本文中研究对象为采用双层玻璃幕墙带中庭的办公建筑,共6层,外形结构见图1,幕墙结构见图2:图1 建筑外形图 图2 廊道式双层幕墙局部放大图该幕墙为廊道式双层幕墙,每层设置通风道,层间水平有分隔,无垂直换气通道,自然通风的路径为:这类建筑室内环境易受太阳辐射影响,同时其空间高度高,上下温差大,这对预测带来很大困难,随着计算机及流体力学的发展,三维CFD模拟技术得到广泛应用,它即可以满足大型建筑多

5、空间多开口的自然通风设计要求,又能精确预测各设计室内的空气速度场和温度分布,因此本文在满足顶层室内热环境的基础上设计了屋顶排风天窗面积,并在此基础上利用CFD对该建筑的局部房间室内热环境进行了数值模拟。2.2 技术路线自然通风一般采用风压或者热压,中庭建筑的“烟囱效应”就是利用建筑内部的热压作用,由于室外风速和风向是经常变化的,因而风压作用不是一个可靠的稳定因素,所以本文进行模拟计算时进行了简化,仅考虑热压下的自然通风。热压通风,是利用建筑内部由于空气密度不同,热空气趋于上升,而冷空气趋向下降的特点。热压作用与进风口和出风口的高度差,以及室内外空气温度差存在着密切的关系:高度差愈大,温度差愈大

6、,则热压通风的效果愈明显。因而大楼各楼层(共6层)的进风量随楼层高度的增加而减小,基于这种情况考虑,在满足6楼室内热环境的要求下,设计屋顶侧窗面积。基本技术路线见图3:图3基本技术路线3.房间的计算数学模型3.1 物理模型(a) (b) (c)图4 计算物理模型a: 一个通风口 b: 两个通风口 c: 整条通风口如图房间长11.1m,宽8.4m,高2.9m;房间内发热量包括人员、灯光及设备, 图中3个长方体代表房间的人员及设备,顶部设9盏灯;图形左下角为三个双层玻璃幕墙进风口,均为1400mm×300mm, 房间右上侧为通风口,通风口面积见表1。3.2 基本参数计算(1)式中: 6楼

7、的室内发热量,W; 空气比热,=1010J/kg.; 室外空气的密度,温度为20,kg/m3; 通风气流的温度差,; 6楼的进风口面积, m2.计算得到m/s根据 (2)式中: 进风窗口的流量系数(取0.35); 室内外空气的密度差,kg/m3; 顶层进风口的中心高度,m; 中和面的高度,m.计算得到 m根据中和面高度计算各楼层进风速度,并根据回风口风速范围3计算房间通风口面积,计算结果如表1所示:表1 各楼层进风速度及房间通风口面积 楼层2楼3楼4楼5楼6楼进风速度(m/s)0.7720.6830.5810.4570.299房间通风口面积(mm×mm)1000×40080

8、0×400800×400800×400800×250注:1楼为开放式大堂3.3 控制方程 模拟房间内的气流属于非稳态的三维不可压缩紊流流动,因此在计算中采用当前在计算房间气流时最常用的模型。模型所遵守的偏微分方程的向量表示如下:连续性方程: (3)动量方程:(4)紊流能量传递方程:(5)紊流能量耗散方程: (6)能量方程: (7)上式列表中,;i=1,2,3;j=1,2,3;为速度,为密度,为分子粘性系数,为紊动能,为紊动能耗散率。模型中的经验常数可按表2取。表2 模型中的经验常数取值0.091.441.921.31.30.94.模拟计算及结果室外气象参

9、数及室内负荷大小直接影响房间的室内热环境,由于大楼顶层的自然通风量最小,室内热环境最恶劣,因此以顶层房间为研究对象,研究内容如下:(1)不同大小的室内通风口,房间的温度场和速度场分布(2)不同室外温度,不同室内发热量,6楼的温度场分布4.1 不同大小的室内通风口,房间的温度场及速度场分布计算工况:室外温度为20,室内发热量为50W/m2;比较房间设置一个800mm×250mm通风口,两个800mm×250mm通风口,及一个8400mm×250mm通风口的室内温度场和速度场(1) 一个通风口:z=1.5m处的温度场和速度场图5a z=1.5m剖面温度场示意图 单位:

10、K 图5b z=1.5m剖面速度场示意图 单位:m/s(2)两个通风口:z=1.5m处的温度场和速度场图6a z=1.5m剖面温度场示意图 单位:K 图6b z=1.5m剖面速度场示意图 单位:m/s(3) 整条通风口:z=1.5m处的温度场和速度场图7a z=1.5m剖面温度场示意图 单位:K 图7b z=1.5m剖面速度场示意图 单位:m/s温度场分析:由于进风口偏左,房间左端温度较右端低; 房间沿气流流动方向温度逐渐增高;比较图5a,6a,7a可以看出房间设置两个通风口室内热环境明显优于设置一个通风口,而设长条风口的优势并不明显。速度场分析:比较图5b,6b,7b,可以看出设置一个通风口,工作区流场比较平缓,在近热源及出风口局部有漩涡;而设置两个通风口及整条通风口的房间,在近内部热源处气流扰动比较大,房间气流形成了两个大涡流区,涡流流线呈闭合状。气流速度除了热源和风口处较高以外,在人员工作区的大部分地区,风速基本保持在0.1m/s以内满足房间舒适区要求。模拟计算得到不同出风口的室内温度分布范围见表3表3 不同出风口形式下的室内温度分布 室外温度()出风口形式温度范围()平均温度()20单个20.722.822.3两个20.622.421.7整条20.522.321.64.2 室外温度变化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论