版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学数学公式大全3数量关系式:1, 每份数份数=总数 总数每份数=份数 总数份数=每份数2, 1倍数倍数=几倍数 几倍数1倍数=倍数 几倍数倍数=1倍数3, 速度时间=路程 路程速度=时间 路程时间=速度4, 单价数量=总价 总价单价=数量 总价数量=单价5, 工作效率工作时间=工作总量 工作总量工作效率=工作时间 工作总量工作时间=工作效率6, 加数+加数=和 和-一个加数=另一个加数7, 被减数-减数=差 被减数-差=减数 差+减数=被减数8, 因数因数=积 积一个因数=另一个因数9, 被除数除数=商 被除数商=除数 商除数=被除数和差问题的公式(和+差)2=大数(和-差)2=小数和倍问题
2、和(倍数-1)=小数小数倍数=大数(或者 和-小数=大数)差倍问题差(倍数+1)=大数小数倍数=大数(或 小数+差=大数)平均数问题公式总数量总份数=平均数。植树问题:1 非封闭线路上的植树问题主要可分为以下三种情形:如果在非封闭线路的两端都要植树,那么:株数=段数+1= 全长株距+1全长=株距(株数-1)株距=全长(株数-1)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长株距全长=株距株数株距=全长株数如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长株距-1全长=株距(株数+1)株距=全长(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长株距
3、全长=株距株数株距=全长株数盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)(两次每人分配数的差)=人数。例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”解(7+9)(10-8)=162=8(个)人数108-9=80-9=71(个)桃子或88+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)(两次每人分配数的差)=人数。例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”解(680-200)(50-45)=4805=96(人)45
4、96+680=5000(发)或5096+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)(两次每人分配数的差)=人数。例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”解(90-8)(10-8)=822=41(人)1041-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏(两次每人分配数的差)=人数。(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈(两次每人分配数的差)=人数。(例略)相遇问题相遇路程=速度和相遇时间相遇时间=相遇路程速度和速度和=相遇路程相遇时间同向行程问
5、题公式追及(拉开)路程(速度差)=追及(拉开)时间;追及(拉开)路程追及(拉开)时间=速度差;(速度差)追及(拉开)时间=追及(拉开)路程。流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)2水流速度=(顺流速度-逆流速度)2浓度问题:溶质的重量+溶剂的重量=溶液的重量溶质的重量溶液的重量100%=浓度溶液的重量浓度=溶质的重量溶质的重量浓度=溶液的重量利润与折扣问题:利润=售出价-成本利润率=利润成本100%=(售出价成本-1)100%涨跌金额=本金涨跌百分比折扣=实际售价原售价100%(折扣1)利息=本金利率时间税后利息=本金利率时间(1-20
6、%)(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1公顷=10000平方米 1亩=666。666平方米(5)1升=1立方分米=1000毫升 1毫升=1立方厘米重量换算:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算:1世纪=100年 1年=12月大月(31天)有:135781012月小月(30天)的
7、有:46911月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒一般行程问题公式平均速度时间=路程;路程时间=平均速度;路程平均速度=时间。反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:(速度和)相遇(离)时间=相遇(离)路程;相遇(离)路程(速度和)=相遇(离)时间;相遇(离)路程相遇(离)时间=速度和。列车过桥问题公式(桥长+列车长)速度=过桥时间;(桥长+列车长)过桥时间=速度;速度过桥时间=桥、车长度之和。行船问
8、题公式(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)2=船速;(顺水速度-逆水速度)2=水速。(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。工程问题公式(1)一般公式:工效工时=工作总量;工作总量工时=工效;工作总量工效=工时。(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;1单位时间能完成的几分之
9、几=工作时间。(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)鸡兔问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-236)(4-2)=14(只)兔;36-14=22(只)鸡。解二(436-100)(4-2)=22
10、(只)鸡;36-22=14(只)兔。(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)4)得失问题(鸡兔问题的推
11、广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(41000-3525)(4+15)=47519=25(个)解二1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)
12、(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”解(52+44)(4+2)+(52-44)(4-2)2=202=10(只)鸡(52+44)(4+2)-(52
13、-44)(4-2)2=122=6(只)兔(答略)求分率、百分率问题的公式比较数标准数=比较数的对应分(百分)率;增长数标准数=增长率;减少数标准数=减少率。或者是两数差较小数=多几(百)分之几(增);两数差较大数=少几(百)分之几(减)。增减分(百分)率互求公式增长率(1+增长率)=减少率;减少率(1-减少率)=增长率。比甲丘面积少几分之几?”解这是根据增长率求减少率的应用题。按公式,可解答为百分之几?”求比较数应用题公式标准数分(百分)率=与分率对应的比较数;标准数增长率=增长数;标准数减少率=减少数;标准数(两分率之和)=两个数之和;标准数(两分率之差)=两个数之差。求标准数应用题公式比较
14、数与比较数对应的分(百分)率=标准数;增长数增长率=标准数;减少数减少率=标准数;两数和两率和=标准数;两数差两率差=标准数;方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2层数)2=中空方阵的人数。或者是(最外层每边人数-层数)层数4=中空方阵的人数。总人数4层数+层数=外层每边人数。例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-23=4(人)所以,空心部分方阵人数有44=16(人)故这个空心方阵的人数是100-16=84(人)解二直接运用公式。根据空心方阵总人数公式得(10-3)34=84(人)利率问题公式利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。(1)单利问题:本金利率时期=利息;本金(1+利率时期)=本利和;本利和(1+利率时期)=本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纤维制书写用具市场发展现状调查及供需格局分析预测报告
- 2024年度企业并购保密合同
- 运载工具专用座椅套市场环境与对策分析
- 2024年度旅游服务公司与景区合作合同
- 2024年度房地产项目园林景观设计合同
- 草本化妆品市场发展预测和趋势分析
- 2024年度品牌形象设计:朋友圈Logo定制服务合同
- 2024年度拆房工程环境保护与污染处理合同
- 2024年度旅游景区开发与运营管理合同
- 2024年度城市供水工程建设的施工合同
- 教学设计中的资源整合与利用
- 浙江省公路工程工程量清单计价规范(word版)
- 年产量万吨铝及铝合金板带材车间设计论述
- 2022信息安全技术服务器安全技术要求和测评准则
- 七年级期中考试总结班会课件
- 《柴油发电机组》课件
- 个人品牌建设年终培训教你打造独特的个人品牌形象
- 《导游基础知识》课件
- 中医康复技术专业设置论证报告
- 公司财务-第4章 净现值
- 养老保险知识普及
评论
0/150
提交评论