




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 1、 全等三角形的定义全等三角形的定义能够完全重合的两个三角形叫能够完全重合的两个三角形叫全等三角形全等三角形。2、 全等三角形有什么性质?全等三角形有什么性质?:问题:问题1:其中相等的边有:其中相等的边有问题问题2:其中相等的角有:其中相等的角有:AB=DE, BC=EF, AC=DFA=D, B=E, C=F如图如图,已知已知ABC DEFABCDEF(全等三角形的对应边相等)全等三角形的对应边相等)(全等三角形的对应角相等(全等三角形的对应角相等) 问题问题3.在在ABC 与与ABC中中,若若AB=AB,BC=BC,AC=AC,A=A, B=B, C=C,那么那么ABC 与与ABC全
2、等吗全等吗?具备三条边对应相等三条边对应相等,三个角对应相等三个角对应相等的两个三角形全等ABCABC思考思考:要使两个三角形全等要使两个三角形全等,是否一定要六个条件呢是否一定要六个条件呢?满足下列条件的两个三角形是否一定全等:(1)一个条件(2)两个条件(3)三个条件一边一角两边一边一角两角三角三边两边一角两角一边 8cm 8cm满足下列条件的两个三角形是否一定全等:一边一角两边一边一角两角三角三边两边一角两角一边(1)一个条件(2)两个条件(3)三个条件400400满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应
3、相等的两个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)三个条件3009cm3009cm3009cm3009cm3009cm满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)三个条件300500300500满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。(1)一个条件(2)两个条件(3)
4、三个条件 8cm 9cm 8cm 9cm满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对应相等的两个三角形等的两个三角形不一不一定定全等。全等。(1)一个条件(2)两个条件(3)三个条件 65度度35度度80度度65度度35度度80度度满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对
5、应相等的两个三角形等的两个三角形不一不一定定全等。全等。(1)一个条件(2)两个条件(3)三个条件 8cm 6cm 9cm 8cm 6cm 9cm满足下列条件的两个三角形是否一定全等:一个条件两个条件三个条件一边一角两边一边一角两角三角三边两边一角两角一边只有一个条件对应相等的只有一个条件对应相等的两个三角形两个三角形不一定不一定全等。全等。只有两个条件对应相只有两个条件对应相等的两个三角形等的两个三角形不一不一定定全等。全等。先任意画出一个先任意画出一个ABC,再画一个,再画一个 ABC,使,使AB= AB ,BC =BC,C A= CA,你能做到吗?,你能做到吗?画法:画法:画一个画一个
6、ABC,使,使AB= AB ,BC =BC,C A= CA画画线段线段B BC C =BC=BC,分别分别以以B B,C C为为圆心,以线段AB AB ,ACAC为半径画弧,为半径画弧,两弧交于点两弧交于点AA,连接线段连接线段 AB= AC三边对应相等的两个三角形全等(三边对应相等的两个三角形全等( 可以可以简写为简写为“边边边边边边”或或“SSS”)。)。想一想:这个结果反映了什么规律?想一想:这个结果反映了什么规律?全等全等思考:思考:你能用你能用“边边边边边边”解释三角形具解释三角形具有稳定性吗?有稳定性吗? 判断两个三角形全等的推理过程,叫做证明三角判断两个三角形全等的推理过程,叫做
7、证明三角形全等。形全等。ABCDEF用数学语言表述:用数学语言表述:在在ABC和和 DEF中中 ABC DEF(SSS) AB=DE BC=EF CA=FDACB 例例1. 如下图,如下图,ABC是一个钢架,是一个钢架, AB=AC,AD是连接是连接A与与BC中点中点D的支架。的支架。 求证:求证: ABD ACD分析:分析:要证明要证明 ABD ACD,首先要看这两个三角形的三条边首先要看这两个三角形的三条边是否对应相等。是否对应相等。证明证明: D是是BC中点,中点, BD=CD. AB=AC, BD=CD, AD=AD, ABD ACD(SSS)在在ABD和和 ACD中中, 已知已知AC
8、=FE,BC=DE,点,点A,D,B,F在在一条直线上,一条直线上,AD=FB(如图),要用(如图),要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?以外,还应该有什么条件?怎样才能得到这个条件?怎样才能得到这个条件?解:要证明解:要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共部分,的公共部分,且且AD=FB AD+DB=FB+DB 即即 AB=F 已知已知AC=FE,BC=DE,点,点A,D,B,F在在一条直线上,一条直线上,AD=FB(如图),要用(如图),要用“边边边边边边”
9、证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?以外,还应该有什么条件?怎样才能得到这个条件?怎样才能得到这个条件?证明:AD=FB, ADDB=FB DB , 即AB= FD.在在 ABCABC和和 FDEFDE中,中,AC=FE,AC=FE,AB=FD,AB=FD,BC=DE,BC=DE, ABC ABC FDE (SSS). FDE (SSS). 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。 BD-ED=CE-ED, 即即BE=CD。CABDE 在在 AEB和和 ADC中,中,AB=ACAE=ADBE=CD AEB ADC (SSS)证明证明:BD=CE,(1)准备条件:证全等时要用的间接条件要先证好;准备条件:证全等时要用的间接条件要先证好;(2)证明三角形全等书写三步骤:证明三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明三角形全等的步骤:证明三角形全等的步骤:小结小结2. 三边对应相等的两个三角形全等三边对应相等的两个三角形全等(边边边或(边边边或SSS););1.知道三角形三条边的长度怎样画三角形,知道三角形三条边的长度怎样画三角形,通过本节课的学习通过本节课的学习,你有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学双减体育活动方案
- 小学捐款活动方案
- 寻觅色彩活动方案
- 客房暑假活动方案
- 小学发展书法活动方案
- 室外踏青活动方案
- 寒假大调研活动方案
- 小学汉服秀活动方案
- 室内生日活动方案
- 家长教师活动方案
- 出租车 专业部分考核试题 城市客运企业主要负责人和安全生产管理人员安全考核基础题库
- GB/T 9634.3-2002铁氧体磁心表面缺陷极限导则第3部分:ETD和E形磁心
- GB/T 8478-2008铝合金门窗
- 人教版七年级下册数学《期末检测试卷》
- 防腐除锈检验记录
- 公司金融课件(完整版)
- 三维激光扫描技术与应用实例-PPT课件
- 铁路货物装载常用计算公式
- 14S501-1 球墨铸铁单层井盖及踏步施工
- (新知杯)2017-2011上海市初中数学竞赛试卷
- 职业紧张压力量表OSI
评论
0/150
提交评论