卫生统计学- 卫统9方差分析ppt课件_第1页
卫生统计学- 卫统9方差分析ppt课件_第2页
卫生统计学- 卫统9方差分析ppt课件_第3页
卫生统计学- 卫统9方差分析ppt课件_第4页
卫生统计学- 卫统9方差分析ppt课件_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第九第九章章 第一节 方差分析的基本思想和应用条件 第二节 完全随机设计的方差分析 第三节 随机区组设计的方差分析 第四节 多个样本均数的两两比较 第五节 交叉设计的方差分析 第六节 析因设计的方差分析 第七节 重复测量设计的方差分析 方差分析方差分析analysis of variance, ANOVA) 是是20世纪世纪20年代发展起年代发展起来的一种统计方法,最来的一种统计方法,最早由英国著名统计学家早由英国著名统计学家R.A.Fisher提出,故又提出,故又称称F检验检验F test),用),用于多个于多个 均数的比较。均数的比较。 第一节 方差分析的基本思想和应用条件方差分析的基本思

2、想 方差分析的含义方差分析的含义 方差是描述研究对象变异程度的一种指标方差是描述研究对象变异程度的一种指标 方差分析是一种假设检验的方法,就是对变异的分方差分析是一种假设检验的方法,就是对变异的分析析 方差分析的基本思想方差分析的基本思想 根据资料的设计类型即变异的不同来源),将全根据资料的设计类型即变异的不同来源),将全部观察值之间的变异总变异分解为两个或多个部观察值之间的变异总变异分解为两个或多个部分,除随机误差外其余每个部分的变异都可由某部分,除随机误差外其余每个部分的变异都可由某个因素的作用加以解释,通过比较不同变异来源的个因素的作用加以解释,通过比较不同变异来源的均方,借助均方,借助

3、F分布作出统计推断,以了解某因素对分布作出统计推断,以了解某因素对观察指标是否有影响或某因素是否有效应。观察指标是否有影响或某因素是否有效应。方差分析的基本思想【例【例9-1】 某研究者为研究煤矿粉尘作业环境对尘肺的影响,某研究者为研究煤矿粉尘作业环境对尘肺的影响, 将将24只只Wistar 大鼠随机分到甲、乙、丙三个组,每组大鼠随机分到甲、乙、丙三个组,每组8只,只, 分别在地面办公楼、煤炭仓库和矿井下染尘,分别在地面办公楼、煤炭仓库和矿井下染尘,12周后测量周后测量 大鼠全肺湿重大鼠全肺湿重g),数据见表),数据见表9-1。 样本均数的差异,可能有两种原因所致: 可能由随机误差所致,随机误

4、差包括两种成分:个体间的变异和测量误差两部分; 可能是由于各组所接受的处理不同,不同的处理引起不同的作用和效果,导致各处理组之间均数不同。 本研究关心三组大鼠的全肺湿重有无差别? 即三个处理组不同环境总体均数之间是否相等。 从表中所有大鼠的全肺湿重测量值,可以分析出三种不同的变异: 总变异 组间变异 组内变异总变异的分解总变异的分解组间变异组间变异总变异总变异组内变异组内变异 总变异总变异 24只大鼠的全肺湿重大小各不相等,它们之间只大鼠的全肺湿重大小各不相等,它们之间的变异称为总变异。其大小可以用每个观察值的变异称为总变异。其大小可以用每个观察值与总均数的离均差平方和来表示,称为总离均与总均

5、数的离均差平方和来表示,称为总离均差平方和差平方和SS总总2 () 1 (9-1)ijijSSx xN 总总 组间变异组间变异 三组之间的各样本均数也大小不等,它们之间三组之间的各样本均数也大小不等,它们之间的变异称为组间变异。的变异称为组间变异。 可以用各处理组均数与总均数的离均差平方和可以用各处理组均数与总均数的离均差平方和来表示,称为组间离均差平方和来表示,称为组间离均差平方和SS组间组间2() 1 (9-2)iiiSSn xxk 组间组间 组内变异组内变异variation within groups) 各组内观察值亦大小不等,这种变异称为组内各组内观察值亦大小不等,这种变异称为组内变

6、异,组内变异仅反映随机误差,故又称误差变异,组内变异仅反映随机误差,故又称误差变异。其大小可用各组内每个测量值与该组均变异。其大小可用各组内每个测量值与该组均数的离均差平方和表示,记为数的离均差平方和表示,记为SS组内。组内。2() (1 ) (9-3)ijiiijiSSxxnN k 组 内组 内 数理统计可以证明,上述三种变异及相应自由度的关系为: 以上各离均差平方和均与自由度有关,为了便于比较,可将各离均差平方和除以相应的自由度,得各自的均方mean square,MS) 均方MS反映平均变异的大小 (9-4)SSSSSS总总组 间组 内组 间组 内 (9-5)SSSSMSMS组内组间组间

7、组内组间组内, 将组间均方除以组内均方即得方差分析的统计量F 理论上若处理因素无效应,F=1 反之,若处理因素有效应,则组间变异不仅反映随机误差,还包括处理因素的效应,此时组间均方应明显大于组内均方,即F1。 (9-6)M SFM S组 间组 内组内组间组内变异组间变异MSMSF F值要大到何种程度才有统计学意义呢?或者说,F值要大到何种程度才能认为各组均数间的差异是由处理因素引起而非随机误差呢?可以通过查F界值表,根据P值作出统计推断在附表7F界值表中,纵标目为组间自由度,横标目为组内自由度,表中给出了 时供方差分析时用的单侧F界值, 用 表示。 05. 012,(,)F 结果判断结果判断

8、假设假设 ,那么,那么 ,按,按 水准拒水准拒绝绝H0,接受,接受H1,差别有统计学意义,可以认,差别有统计学意义,可以认为各总体均数不等或不全相等处理因素有效为各总体均数不等或不全相等处理因素有效应)应) 反之,则差别无统计学意义,尚不能认为各总反之,则差别无统计学意义,尚不能认为各总体均数不等或不全相等尚不能认为处理因素体均数不等或不全相等尚不能认为处理因素有效应)。有效应)。 12,(,)FF P 方差分析的基本思想方差分析的基本思想 将所有观察值之间的变异称总变异根据离将所有观察值之间的变异称总变异根据离均差平方和划分的原理,按设计和需要分解成均差平方和划分的原理,按设计和需要分解成两

9、个或多个部分。每一部分变异都反映了研究两个或多个部分。每一部分变异都反映了研究工作中某种特定的内容如某种处理因素的作工作中某种特定的内容如某种处理因素的作用、随机误差的影响等),通过对平均变异用、随机误差的影响等),通过对平均变异MS的比较,做出相应的统计判断。的比较,做出相应的统计判断。 方差分析的应用条件方差分析的应用条件 任何统计分析方法都有其适用条件,对于任何统计分析方法都有其适用条件,对于方差分析来说,理论上要求数据满足以下方差分析来说,理论上要求数据满足以下条件:条件: 各样本须是相互独立的随机样本独立性)各样本须是相互独立的随机样本独立性) 各样本来自正态分布总体正态性)各样本来

10、自正态分布总体正态性) 各总体方差相等方差齐性)各总体方差相等方差齐性)第二节 完全随机设计的方差分析 完全随机设计completely random design) 又称成组设计。在实验研究中,按随机化原则将受试对象随机分配到某一研究因素的多个水平中去,然后观察实验效应;在调查研究中,按一个研究因素的不同水平分组,比较各组的效应。目的都是推断不同水平下各组均数之间的差别是否有统计学意义。 这种完全随机设计的多个样本均数的比较可用完全随机设计的方差分析 第三节随机区组设计的方差分析 随机区组设计随机区组设计randomized block design) 又称配伍组设计,是配对设计的扩展。其又

11、称配伍组设计,是配对设计的扩展。其设计方法是将全部受试对象按某种或某些设计方法是将全部受试对象按某种或某些特征分为若干个区组,使每个区组内研究特征分为若干个区组,使每个区组内研究对象的特征尽可能接近,然后分别使每个对象的特征尽可能接近,然后分别使每个区组内的观察对象随机地接受研究因素某区组内的观察对象随机地接受研究因素某一水平的处理。一水平的处理。变异的分解变异的分解 随机区组设计总变异SS总和处理组间变异SS组间的计算与完全随机设计的方差分析相同 SS区组 的计算2() 1 (9-7)jjjSSn xxb 区组区组8)-(9 ) 1/( bSSMS区组区组 数理统计上可以证明,随机区组设计的

12、总变异和自由度可以分解为三部分: 用k表示处理组数,b表示区组数; 实验观察值下标ii=1,2,k表示组别,下标jj=1,2,b表示区组序号。 9)-(9 误差区组处理总误差区组处理总SSSSSSSS随机区组设计资料的方差分析的基本步骤 随机区组设计的方差分析 总变异 和完全随机设计的方差分析相比,误差减小了,检验效率提高了。 处理组间变异区组间变异误差第四节 多个样本均数的两两比较 如果要进一步判断三组中究竟哪两组总体均数有差别,需要在前述方差分析的基础上进行多个样本均数的两两比较,而不能直接用t检验进行比较。 如果将上述资料用t检验进行两两比较,需进行3次t检验。 若检验水准为0.05,则

13、每次检验判断正确的概率为0.95,根据概率乘法法则,全部判断正确的概率为0.953=0.857,犯类错误的概率为 1-0.857=0.143, 远远大于0.05的检验水准。 介绍常用的两种方法: SNKStudent-Newman-Keuls检验 也称q检验,适用于探索性研究,对任意两个样本均数都进行检验。 LSD-t (least significant difference最小显著性差异检验 适用于某一对或某几对在专业上有特殊意义的均数间的比较,如多个处理组与对照组的比较,或某几个处理组间的比较,一般在设计阶段确定哪些均数需进行多重比较。 SNK-q 检验检验 检验统计量检验统计量q的计算

14、公式为:的计算公式为: (9-10)11()2ABABABxxABxxxxqSMSnn 误 差误 差 式中 为两个对比组的样本均数, 是方差分析中的误差均方或组内均方), 为两对比组的样本例数。 v误差 为方差分析中误差均方的自由度。BAxx,误差MSBAnn , 3.确定P值,做出统计推断 q界值不但考虑自由度,而且考虑组数a ,即任意两对比组包含的组数。以组数a 和 查附表8q 界值表)。21误差 LSD-t检验检验 适用于某一对或某几对在专业上有特殊意适用于某一对或某几对在专业上有特殊意义的均数间的比较,如多个处理组与对照义的均数间的比较,如多个处理组与对照组的比较,或某几个处理组间的比

15、较,一组的比较,或某几个处理组间的比较,一般在设计阶段确定哪些均数需进行多重比般在设计阶段确定哪些均数需进行多重比较。较。 检验统计量检验统计量t值的计算公式为:值的计算公式为: (9-11)11()ABABABxxABxxxxtSMSnn 误差误差第五节 交叉设计的方差分析 交叉设计交叉设计cross-over design) 医学研究中多用于止痛、镇静、降压等药医学研究中多用于止痛、镇静、降压等药物疗效的研究,可分为两阶段交叉设计和物疗效的研究,可分为两阶段交叉设计和多阶段交叉设计。多阶段交叉设计。 两阶段交叉设计方差分析的变异分解为:两阶段交叉设计方差分析的变异分解为:SSSS (9-1

16、2) SSSSSS处理总阶段个体误差处理总阶段个体误差 交叉设计的方差分析 总变异 处理组变异个体变异 误差阶段变异 从表9-13可知,两个阶段之间差异无统计学意义,尚不能认为A、B两种方案治疗高血压的疗效有差别。 【知识点【知识点9-5】 二阶段交叉设计方差分析的总变异可以分解为处理组二阶段交叉设计方差分析的总变异可以分解为处理组间变异、阶段间变异、个体变异和误差变异四部分间变异、阶段间变异、个体变异和误差变异四部分 交叉设计可以采用完全随机设计或配对设计方法来安交叉设计可以采用完全随机设计或配对设计方法来安排受试对象排受试对象 交叉实验的处理是单因素,但影响实验结果的因素还交叉实验的处理是

17、单因素,但影响实验结果的因素还有非人为控制的受试者间的个体差异和试验阶段这两有非人为控制的受试者间的个体差异和试验阶段这两个因素。因此,交叉实验实际上是一个实验因素和两个因素。因此,交叉实验实际上是一个实验因素和两个重要的非实验因素的多因素试验个重要的非实验因素的多因素试验 。第六节 析因设计的方差分析 析因设计析因设计factorial design资料的方差分析包含主资料的方差分析包含主效应分析、交互效应分析和单独效应分析效应分析、交互效应分析和单独效应分析3个层次。个层次。 单独效应单独效应simple effect是指其他因素的水平固定是指其他因素的水平固定时,同一因素不同水平间的差别

18、。时,同一因素不同水平间的差别。 主效应主效应main effect是指某一因素各水平间的平均是指某一因素各水平间的平均 差别。差别。 交互效应交互效应interaction是指当某因素的各单独效应是指当某因素的各单独效应随另一因素水平的变化而变化时,则称这两个因素间随另一因素水平的变化而变化时,则称这两个因素间存在交互效应。存在交互效应。第六节 析因设计的方差分析2.1 2.2 2.0 1.3 1.2 1.1 0.8 1.2 1.0 0.8 0.9 0.7 A因素因素2水平)水平)A1 A2B因素因素2水平)水平)B1 B2 22或22析因设计是析因设计中最简单的一种,表示有2种处理因素,每

19、种处理因素有2个水平,有4种处理组合: A1B1 A1B2 A2B1 A2B2 变异分解变异分解AABAB () (9-13) BABEESSSSSSSSSSSSSS处理总误差处理总误差() 两因素析因设计资料方差分析的基本步骤两因素析因设计资料方差分析的基本步骤 A、B两因素交互效应: AB=(A1B1A2B1) ( A1B2 A2B2) / 2 =( 1.1 0.4 )/ 2=0.35。 知识点 析因设计是将两个或多个实验因素的各水平进行交叉分组的方法,其被广泛应用于需要分析交互效应和选择最佳组合的实验研究中 析因设计不但可以分析主效应和交互效应,也可以分析单独效应,故效率较高。但当因素太

20、多时,所需的样本含量会很大 对析因设计资料,应先分析交互效应。若交互效应有统计学意义,应进一步分析各因素的单独效应;反之,若交互效应无统计学意义,则因素间的作用相互独立,分析某一因素的作用只需考察该因素的主效应第七节 重复测量设计的方差分析 重复测量设计重复测量设计repeated measurement design) 是指在给予一种或多种处理后,在多个时是指在给予一种或多种处理后,在多个时间点上重复测量同一受试对象某一观察指间点上重复测量同一受试对象某一观察指标的值。标的值。 重复测量研究的目的是探讨同一研究对象重复测量研究的目的是探讨同一研究对象在不同时点上某指标的变化情况。在不同时点上某指标的变化情况。 该设计在临床试验和流行病学研究中较常该设计在临床试验和流行病学研究中较常见,如药效研究中观察给药后不同时点血见,如药效研究中观察给药后不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论